

Building Impressive
Presentations with impress.js

Design stunning presentations with dynamic visuals
and 3D transitions that will captivate your colleagues

Rakhitha Nimesh Ratnayake

BIRMINGHAM - MUMBAI

Building Impressive Presentations with impress.js

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2013

Production Reference: 1190313

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-648-7

www.packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

Credits

Author
Rakhitha Nimesh Ratnayake

Reviewers
Chetankumar Akarte

Christian Ziebarth

Acquisition Editor
Martin Bell

Commissioning Editor
Maria D'souza

Technical Editor
Nitee Shetty

Project Coordinator
Esha Thakker

Proofreader
Maria Gould

Indexer
Tejal Soni

Graphics
Aditi Gajjar

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

About the Author

Rakhitha Nimesh Ratnayake is a software engineer working in a leading
software development firm in Sri Lanka. His work there includes planning and
implementing projects in a wide range of technologies based on PHP frameworks.

He is the creator of www.innovativephp.com, where he writes tutorials on the latest
web development and design technologies. He is also a regular contributor to a
number of popular websites such as 1stwebdesigner, the tuts+ network, and the
Sitepoint network.

He likes to watch cricket and stay with the family when he isn't working on coding
or writing. Make sure to visit him online at www.innovativephp.com and follow him
on Twitter at twitter.com/innovativephp.

I would like to thank my parents and my brother for providing great
support throughout the book. This was my first book and I really
appreciate the encouragement they gave in tough periods while
writing the book. Special thanks to Bartek Szopka, who is the creator
of impress.js, for helping me in the early stages of this book.
I would also like to thank Packt team members, Shrutika Kalbag for
finding my article on 1stwebdesigner and providing me with the
idea about this book, Maria D'souza for the support throughout the
book and being the editor, and Esha Thakker for being the project
coordinator of the book.
Finally, I would like to thank you for reading my book and being
one of the most important people who helped me to make this book
a success. Thank you.

http://www.innovativephp.com
http://www.innovativephp.com
http://twitter.com/benfrain
http://twitter.com/innovativephp

About the Reviewers

Chetankumar Akarte is an Electronics Engineer from Nagpur University located
in central India. He has more than 6 years of experience in the design, development,
and deployment of Web, Windows, and mobile-based applications with expertise in
PHP, .NET, JavaScript, Java, Android, and more.

He likes to contribute on the newsgroups and forums. He has written articles for
Electronics For You, DeveloperIQ, and Flash & Flex Developer's Magazine. In his
spare time, he likes to maintain his technical blog http://www.tipsntracks.com to
get in touch with the developers community. He has been the technical reviewer for
three books published by Packt Publishing. He has released some Marathi and Hindi
e-book applications in the Android market (https://play.google.com/store/
apps/developer?id=Sahitya+Chintan).

He lives in the hilly Kharghar area of Navi Mumbai with his son Kaivalya and wife
Shraddha. You can visit his websites http://www.SahityaChintan.com and http://
www.tipsntracks.com, or get in touch with him at chetan.akarte@gmail.com.

I would like to thank my wife Shraddha and my parents for their
consistent support and encouragement and my lovely son Kaivalya
who allowed me to use his playtime with me to dedicate towards
this book. I would also like to thank Packt Publishing for giving me
the opportunity to do something useful and especially the Project
Coordinator, Esha Thakker, for all the valuable support.

Christian Ziebarth began working on the Web in 1996 when he was informed
of GeoCities. He began learning HTML in 1998, CSS in 1999, and was doing things
in CSS in Netscape 4 of which only a few people knew could be done at the time.
Since 2000 he has worked on many professional web projects of varying sizes and
continues to explore new frontiers on the Web. He lives in California and has also
lived in Ireland and Hawaii.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Getting Started with Impressive Presentations 7

What is impress.js? 8
Built-in features 8
Beyond presentations with impress.js 8
Why is it important? 9

Presentation outline 10
Using bullet points 10
Animations 10
Using themes 11

Downloading and configuring impress.js 11
Creating your first presentation 12

Designing the presentation 13
Creating the presentation container 14
Creating your first step 14
Applying styles on steps 15
Creating Step 1 16
Creating Step 2 17
Limiting the visibility of steps 18
Presentation overview 19

Summary 20
Chapter 2: Exploring Impress Visualization Effects 21

Introduction to CSS transformations 22
Positioning effects 22

Positioning on the x axis 23
Positioning on the y axis 24
Positioning on the z axis 24

Table of Contents

[ii]

Rotating effects 26
Rotation around the x axis 26
Rotation around the y axis 27
Rotation around the z axis 28

Rotations in practice 29
Scaling effects 32
The importance of positioning in scaling 34
Scaling in practice 35

Planning the design 35
Data perspective 37
impress.js under the hood 40
Summary 42

Chapter 3: Diving into the Core of impress.js 43
impress.js configuration 44

Default configurations 44
Customizing configurations 45

Configuring the width and height 45
Configuring the minScale and maxScale 46
Configuring the perspective 46
Configuring the transition duration 46

Looking at configurations inside the core 47
Understanding the impress API functions 48

Inside the next function 48
Inside the prev function 49
Inside the goto function 49

Automating presentations 51
Creating custom transition timing 52
impress.js step events 53
How to use the step class 55
Working with keyboard configurations 56

Default keyboard configurations 56
Inside the impress core 56

Assigning custom keys for custom events 58
Adding new keys for new events 58
Handling the step click event 59
Summary 60

Chapter 4: Presenting on Different Viewports 61
Fullscreen presentations 61
Using impress.js inside a container 62
Developing a content slider 62

Planning the design 62

Table of Contents

[iii]

Designing slides 63
Wrapping the presentation inside a container 64
Playing the slider automatically 64
Creating navigation controls 65
Creating the play/pause features 65
Adding slide numbers 66
Highlighting the active slide 67

impress.js presentations on mobile devices 68
Issues in designing for mobile devices 68

Scenario 1 69
Scenario 2 70
Scenario 3 71

Best design practices for mobiles devices 72
Summary 73

Chapter 5: Creating Personal Websites 75
Planning the website structure 76

Designing the header 76
Creating the presentation wrapper 77

Creating pages 78
Designing the home page 79
Designing the portfolio page 81

Portfolio gallery 81
Portfolio single 82

Designing the timeline page 84
Defining the timeline navigation 86
Designing the services page 87
Handling the navigation menu 89
Creating the navigation hint 90
Summary 91

Chapter 6: Troubleshooting 93
Browser compatibility 93
Handling unsupported browsers 94
Limitations and new features 95

Positioning steps relative to other steps 96
Defining the previous and next steps 96
Transition duration for individual steps 97
Adding and removing navigation keys 97
Creating substeps 97

Troubleshooting and support 98
Summary 99

Table of Contents

[iv]

Appendix: Impress Tools and Resources 101
Impress presentation tools 101

Strut 101
Impressionist 103

Impressive presentations 104
impress.js demos from the book 104

Index 105

Preface
Creating presentations and impressing the audience is an important task for people
who work as software professionals, marketers, public speakers, or anyone who
is familiar with computer-related work. Online presentation creation applications
are gaining much more popularity over conventional desktop-based software
applications in the recent years. impress.js is a powerful library that eases the task
of creating presentations with smooth animations without depending on a software
tool. You are no longer limited to desktop tools as these presentations run on any
supported browser anywhere on the Internet.

This book consists of several practical real-world examples which go beyond the
conventional slide-based presentations covering each aspect of the impress library.
A wide range of applications such as content sliders, image galleries, awesome
presentations, and complete websites are created throughout the book explaining
the techniques in a way that even a beginner can understand.

Understanding how different features work is something we need to know as
developers or designers in order to tweak the core library and create our own
customizations. Important sections of the impress.js core code are explained in detail
with practical examples to make it easier for you to implement new features and
enhance impress.js.

By the time you are done with this book, you'll be able to create a wide range of
components for websites using impress.js as well as stunning visualizations to
impress your audience.

What this book covers
Chapter 1, Getting Started with Impressive Presentations, provides an introduction to
presentations with impress.js and its importance. We also create a basic impress
presentation with detailed code explanations.

Preface

[2]

Chapter 2, Exploring Impress Visualization Effects, discusses the in-depth usage
of impress effects such as positioning, scaling, and rotating using practical
real-world examples. impress.js core code is also discussed in detail to
understand the implementation of CSS effects.

Chapter 3, Diving into the Core of impress.js, is focused on discussing impress.js
configurations and the core code required for simplifying customizations to
existing features. Usage of impress API, step events, and keyboard configurations
is explained using advanced presentations.

Chapter 4, Presenting on Different Viewports, explores the use of impress presentation
fullscreen, inside a container and mobile devices. Fully functional content slider is
created to explain the wide range of uses for impress presentations. Mobile device
support and the handling of presentations on different devices is explained in detail
throughout this chapter.

Chapter 5, Creating Personal Websites, acts as a complete guide to creating personal
websites using impress.js. A single page website is developed with commonly-used
techniques in web design.

Chapter 6, Troubleshooting, covers the compatibility of impress presentations and the
necessary information to fix bugs and get support for issues in impress.js. Limitations
and possible future enhancements are explained to motivate you to implement your
own features for impress.js.

Appendix, Impress Tools and Resources, guides you through the available impress.js
presentation automation tools and some awesome presentations available online.

What you need for this book
This book assumes that the readers are familiar with the basics of HTML, CSS, and
JavaScript. Also, you will need the following things in order to work with this book:

• An Internet connection (to load external libraries and fonts in the
demo files)

• Code editor
• impress.js compatible browser

Preface

[3]

Who this book is for
This book is for anyone who is interested in impressing their audience with stunning
online presentations without depending on software applications. The main focus
will be for the web designers and developers who are familiar with technical stuff.
impress.js is a powerful presentation creation library using CSS transforms, so
readers are expected to have the basic HTML, CSS, and JavaScript knowledge for
creating impressive presentations.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can use the data-rotate-x attribute to rotate elements around the x axis."

A block of code is set as follows:

$(document).ready(function(){
 document.addEventListener
 ("impress:stepenter", function (event) {
 // Code for step enter
 }, false);

 document.addEventListener
 ("impress:stepleave", function (event) {
 // Code for step leave
 }, false);
});

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

$(document).ready(function(){
 document.addEventListener
 ("impress:stepenter", function (event) {
 // Code for step enter
 }, false);

 document.addEventListener
 ("impress:stepleave", function (event) {
 // Code for step leave
 }, false);
});

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "We can
go to the overview of the presentation using the Overview button".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/
support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting Started with
Impressive Presentations

Presentations are one of the most effective ways of communicating our ideas to
people who are interested in the topic. A perfect presentation will grab the attention
of the audience and keep them interested in our ideas, while a bad presentation
can bore our audience and ruin our reputation. This means that, the presentation
creation tools play a vital role in designing a good presentation.

We used to create presentations with popular desktop programs such as Microsoft
PowerPoint and Open Office Impress. Things have changed dramatically now and
web-based presentations are gaining more interest from users. impress.js is one
of the stand out frameworks among the web-based presentation creation libraries
and tools. We are going to work on creating impressive visualizations with this
framework from here on.

In this chapter, we are going to cover the following topics:

• What is impress.js?
• Built-in features
• Beyond presentations with impress.js
• Why is it important?
• Downloading and configuring impress.js
• Creating your first presentation

Ideally you should have basic knowledge of CSS and HTML to understand this
chapter. Everything will be explained using detailed and simple examples and by
the end of this chapter you will have the knowledge to create basic presentation with
impress.js.

So let's get started!

Getting Started with Impressive Presentations

[8]

What is impress.js?
impress.js is a presentation framework build upon the powerful CSS3
transformations and transitions on modern web browsers. Bartek Szopka is the
creator of this amazing framework. According to the creator, the idea came to him
while he was playing with CSS transformations. Prezi.com was the source that got
him inspired. On w3.org we have the following mentioned about CSS transforms:

CSS transforms allows elements styled with CSS to be transformed in two-
dimensional or three-dimensional space

For more information on CSS transformations for those who are interested, visit
http://www.w3.org/TR/css3-transforms/.

Creating presentations with impress.js is not a difficult task once you get used to the
basics of the framework. Slides in impress.js presentations are called steps and they
go beyond the conventional presentation style. We can have multiple steps visible at
the same time with different dimensions and effects. impress.js step designs are built
upon HTML. This means we can create unlimited effects and the only limitation is
your imagination.

Built-in features
impress.js comes with advanced support for most CSS transformations.
We can combine these features to provide more advanced visualizations in modern
browsers. These features are as follows:

• Positioning: Elements can be placed in certain areas of the browser window
enabling us to move between slides.

• Scaling: Elements can be scaled up or scaled down to show an overview or a
detailed view of elements.

• Rotating: Elements can be rotated across any given axis.
• Working on 3D space: Presentations are not limited to 2D space. All the

previously mentioned effects can be applied to 3D space with the z axis.

Beyond presentations with impress.js
This framework was created to build online presentations with awesome effects
with the power of CSS and JavaScript. Bartek, who is the creator of this framework,
mentions that it has been used for various different purposes expanding the original
intention. Here are some of the most common usages of the impress.js framework:

Chapter 1

[9]

• Creating presentations
• Portfolios
• Sliders
• Single page websites

List of demos containing various types of impress.js presentations can be found at
https://github.com/bartaz/impress.js/wiki/Examples-and-demos.

Why is it important?
You must be wondering why we need to care about such a framework when we have
quality presentation programs such as PowerPoint. The most important thing we need
to look at is the license for impress.js. Since it is licensed under MIT and GPL we can
even change the source codes to customize the framework according to our needs.
Also most of the modern browsers support CSS transformations, allowing you to use
impress.js, eliminating the platform dependency of presentation programs.

Both desktop-based presentations and online presentations are equally good at
presenting information to the audience, but online presentations with impress.
js provide a slight advantage over desktop-based presentations in terms of
usability. The following are some of the drawbacks of desktop program generated
presentations, compared to impress.js presentations:

• Desktop presentations require a presentation creation software or
presentation viewer. Therefore, it's difficult to get the same output in
different operating systems.

• Desktop presentations use standard slide-based techniques with a common
template, while impress.js presentation slides can be designed in a wide
range of ways.

• Modifications are difficult in desktop-based presentations since it requires
presentation creation software. impress.js presentations can be changed
instantly by modifying the HTML content with a simple text editor.

Creating presentations is not just about filling our slides with a lot of information
and animations. It is a creative process that needs to be planned carefully. Best
practices will tell us that we should keep the slides as simple as possible with very
limited information and, letting presenter do the detailed explanations.

Let's see how we can use impress.js to work with some well-known presentation
design guidelines.

Getting Started with Impressive Presentations

[10]

Presentation outline
The audience does not have any idea about the things you are going to present
prior to the start of the presentation. If your presentation is not up to standard, the
audience will wonder how many boring slides are to come and what the contents
are going to be. Hence, it's better to provide a preliminary slide with the outline of
your presentation.

A limited number of slides and their proper
placement will allow us to create a perfect outline of
the presentation.

Steps in impress.js presentations are placed in 3D space and each slide is positioned
relatively. Generally, we will not have an idea about how slides are placed when the
presentation is on screen. You can zoom in on the steps by using the scaling feature
of impress.js. In this way, we can create additional steps containing the overview of
the presentation by using scaling features.

Using bullet points
People prefer to read the most important points articles rather than huge chunks of
text. It's wise to put these brief points on the slides and let the details come through
your presenting skills. Since impress.js slides are created with HTML, you can easily
use bullet points and various types of designs for them using CSS. You can also create
each point as a separate step allowing you to use different styles for each point.

Animations
We cannot keep the audience interested just by scrolling down the presentation
slides. Presentations need to be interactive and animations are great for getting the
attention of the audience. Generally, we use animations for slide transitions. Even
though presentation tools provide advanced animations, it's our responsibility to
choose the animations wisely.

impress.js provides animation effects for moving, rotating, and scaling step
transitions. We have to make sure it is used with purpose. Explaining the life cycle
of a product or project is an excellent scenario for using rotation animations. So
choose the type of animation that suits your presentation contents and topic.

Chapter 1

[11]

Using themes
Most people like to make the design of their presentation as cool as possible.
Sometimes they get carried away and choose from the best themes available in the
presentation tool. Themes provided by tools are predefined and designed to suit
general purposes. Your presentation might be unique and choosing an existing
theme can ruin the uniqueness. The best practice is to create your own themes for
your presentations.

impress.js does not come with built-in themes. Hence there is no other option than to
create a new theme from scratch. impress.js steps are different to each other unlike
standard presentations, so you have the freedom to create a theme or design for each
of the steps just by using some simple HTML and CSS code.

Apart from the previous points, we can use typography, images, and videos to create
better designs for impress.js presentations. We have covered the background and the
importance for impress.js. Now we can move on to creating real presentations using
the framework throughout the next few sections.

Downloading and configuring impress.js
You can obtain a copy of the impress.js library by downloading from the github page
at https://github.com/bartaz/impress.js/. The downloaded .zip file contains
an example demo and necessary styles in addition to the impress.js file. Extract
the .zip file on to your hard drive and load the index.html on the browser to see
impress.js in action. The folder structure of the downloaded .zip file is as given in
the following screenshot:

Getting Started with Impressive Presentations

[12]

Configuring impress.js is something you should be able to do quite easily. I'll walk you
through the configuration process. First we have to include the impress.js file in the
HTML file. It is recommended you load this file as late as possible in your document.
Create a basic HTML file called chapter1.html and place the following code:

<!doctype html>
<html lang="en">
 <head>
 <title>impress.js </title>
 </head>
 <body>
 <script src="js/impress.js"></script>
 </body>
</html>

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

We have linked the impress.js file just before the closing body tag to make sure it is
loaded after all the elements in our document. Then we need to initialize the impress
library to make the presentations work.

We can place the following code after the impress.js file to initialize any existing
presentation in the document which is compatible with the impress library:

<script>impress().init();</script>

Since we have done the setup of the impress.js library, we can move on to creating
our first impressive presentation.

Creating your first presentation
You might be familiar with creating presentations with software tools that provides
a slide-by-slide view. Presenting on a web browser is completely different from
standard slideshows. We have an infinite space to position the slides in web-based
presentations where as we get slide after slide in software-based presentations.
Unless we plan the design of the presentations slides in a creative way, we are going
have problems using presentations with impress.js.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Chapter 1

[13]

Get a pencil and paper and design your presentation without using
tools on your computer. Using a computer to design will limit our
creative thinking capabilities.

Designing the presentation
Let's plan the design for a basic presentation to learn how to use the impress.
js library. Once we have the design in mind, it's better to create an outline of the
presentation with exact positions of the slides, as shown in the following diagram:

We are going to use five slides for the presentation including the slide with the title.
The title of the presentation will be the first slide and it will be placed in the center of
the screen. The remaining four slides will be positioned around the first slide at a 90
degree angle allowing the presentation to flow in a circular path. Keeping the design
in mind let's start learning about the impress.js elements necessary to create
a presentation.

Getting Started with Impressive Presentations

[14]

Creating the presentation container
impress.js uses predefined ID's and classes to identify the components in the
presentation. Every step of the presentation should be wrapped inside a container
with the ID impress and should have a CSS class called step to identify it as a single
slide. Here is how a slide will be coded inside the #impress container:

<div id="impress">
 <div class="step">Slide Content</div>
</div>

We can assign animation effects on each step using HTML data
attributes used by impress.js . Here are some of the data attributes
supported by impress.js:

• Positioning: data-x, data-y, data-z
• Scaling: data-scale
• Rotating: data-rotate

Creating your first step
The title of the presentation will be the first step of our presentation. According
to the design the first step is positioned in the center of the screen and it will be
larger than the steps around it. Let's create the first slide using the data attributes
mentioned earlier:

<div id="impress">
<div id="intro" class="step slide" data-x="-1000"
data-y="-1000" data-scale="3">
 <div><h2 class="title1">Building
 Impressive Presentations</h2>
 <h3 class="title1">with</h3>
 <h3 class="title2">Impress.js</h3>
 </div>
 </div></div>

We can assign a unique ID to each step and the ID can be used in the URL to point
directly to a specific step. The first slide can be accessed directly by using #/intro.
It will default to #/step-N in scenarios where the ID is omitted. Here N is the step
number.

Chapter 1

[15]

The ordering of the steps is important when creating impress.js
presentations. The presentation will start with the immediate step
element after the #impress container. Therefore, you need to place
each step in the order you want it to appear on the presentation.

These steps then need to be positioned in the presentation canvas. Data attributes
of impress.js can be defined in the step element. We have used the data-x, data-y,
and data-scale attributes for the first slide. We have used -1000 for both data-x
and data-y attributes. Hence the first slide will be positioned at -1000 px in the x axis
and -1000 px in the y axis in the presentation canvas. impress.js uses the HTML data
attributes for adding effects and necessary configurations. You can learn more about
HTML5 data attributes at http://www.w3.org/TR/2011/WD-html5-20110525/
elements.html.

It's important to note that impress.js will use the
center of the step element for positioning.

Each step can be scaled using the data-scale attribute which is set to 1 by default.
This is similar to the zoom-in and zoom-out features of the web browser. We wanted
to make the first step relatively large compared to the other steps. The first step has
been scaled three times as compared to the other steps. The next step is going to be
on the default scale, so stepping the transition from the first step to the next one can
be considered as a zoom-out since the steps are scaled from 3 to 1. Scaling from 1 to 3
will provide the zoom-in feature when necessary.

Applying styles on steps
The first step has been configured successfully and now we can focus on the
contents. These steps are built using HTML elements and hence we can use any
design inside the presentation steps. We have separated the presentation title
contents into three heading tags with different CSS classes. You also might have
noted that we have used another class called slide for the steps. The step class is for
identifying the steps in the presentation. Thus we are going to use a different class
called slide to specify the common styles for all the steps. Styles can be applied on
individual steps by providing CSS for the ID in cases where you need custom styles
for specific steps.

Getting Started with Impressive Presentations

[16]

A demo presentation provided in the downloaded files contains a stylesheet called
impress-demo.css for styling the sample presentation. It is not required to use that
stylesheet and the creator of impress.js strongly recommends creating your own style
files for new presentations.

impress.js doesn't depend on any external stylesheet. The script adds
all the styles it needs for the presentation to work.

First take a look at the demo CSS file to get an idea about how the styles are defined.
Then, create a new styles file called styles.css. We are going to use common
element styles to reset the element styles. Here is how the styles are defined for the
slide class in our CSS file:

.slide {
 display: block;
 width: 1000px;
 height: 700px;
 border-left:25px solid #eee;
 color:#fff;
}

Each step has been given a specific width and height to make it consistent. We can
design the steps in different sizes unlike most presentation tools. It's up to you to
choose the specific dimensions for certain steps. Styles used to design the contents of
the first step are self explanatory and anyone with basic CSS knowledge will be able
to understand. Look for the #intro section in the styles.css file for specific styles
used for the first step.

Creating Step 1
Step 1 needs to be created after the step with the presentation title. Step 1 is located
on top of the title step, so the data-x value will remain the same and we need to
adjust the data-y value to position Step 1.

Chapter 1

[17]

We had -1000 for the data-y value of the title step. Since we are moving towards
the top of screen the y value needs to be decreased. The code for the Step 1 slide
with the data-y value of -2500 px will be as follows:

<div id="guidelines" class="step slide" data-x="-1000"
data-y="-2500" >
<div class="round"><p>Step 1</p></div>
</div>

Apart from the data-x and data-y values, make sure that you include the step
class for identifying it as a step, and a slide class for common styles for steps. The
rest of the HTML content contains the step data used for the presentation and has
no relation with the framework. Custom styles for Step 1 can be found under #
guidelines ID of the style.css file.

Creating Step 2
Step 2 is going to be different to the previous step according to our planned design.
All the steps apart from the title are placed in a circular path. Rotations can be used to
move the steps in a circular path. The contents of Step 2 will be angled by 90 degree to
get the circular path. Consider the following code for the Step 2 slide in our design:

<div id="graphic" class="step slide" data-x="1000"
data-y="-1500" data-rotate="90">

 <div class="round">Step 2</div>
 </div>

Step 2 is positioned to the right of title and the data-x value increases from left to right
of your screen. We have thus increased the data-x value from -1000 to 1000. Then we
need to rotate the slide by 90 degrees in the slide transition process. impress.js provides
the data-rotate attribute to define rotation angles. In this scenario, steps are rotated
around the z axis and we can use either data-rotate-z or data-rotate to define the
rotations. The rest of the HTML code is the contents of the step and the relative styles
can be found in the #graphic section of the style.css file.

The remaining two steps are similar to the step we just discussed. We need to adjust
the data-x and data-y values to get the proper placement according to our original
design plan.

Getting Started with Impressive Presentations

[18]

Limiting the visibility of steps
Generally, all the steps will be positioned relative to each other. Unless we have
considerable space between the steps, it is possible to get issues displaying during
the presentation. The following screen shows the presentation in the earlier scenario:

We are looking at the first step with the title of the presentation and the contents of
other steps which are displayed partially. This is one of the problems we face when
positioning steps on an infinite screen and we can solve this issue by using simple
CSS codes.

There are some CSS classes assigned to the body element by impress.js during the
various processes. Once the presentation is initialized the impress-enabled class
will be added to the body element. First we hide all the steps by using the following
CSS code:

.impress-enabled .step {
 margin: 0;
 opacity: 0;
}

We have used the opacity attribute for hiding the steps in the default view.
Alternatively, we can use the visibility attribute instead of opacity. Setting the
margins for steps is optional and you can define your own margin values to suit the
presentation. Once the presentation is started, the active step is given a class called
active. Hence we can display just the active slide and hide all the other steps using
the following simple CSS code:

.impress-enabled .step.active { opacity: 1;border:none; }

Chapter 1

[19]

Presentation overview
Now we have all the individual styles of the presentation. Creating an overview is
very important for the people in the audience as well as for the presenter to know
exactly where you are in the presentation. Overview can be considered as a step
containing all the other steps. The content of the overview step is intentionally kept
blank as follows:

<div id="overview" class="step" data-x="-1000" data-y="-1500" data-
scale="5"> </div>

The impress.js framework allows you to scale steps using the data-scale attribute.
All the steps apart from the title will be considered scale 1 since we haven't specified
the data-scale attribute. Overview uses a data-scale value of 5 and it will be
five times larger than the other steps. When you increase the scale, more detailed
information and steps will be displayed on screen.

Consider the following screen for the overview of our presentation:

Overview doesn't have any information and shows all the steps in our presentation.
We can allow users to click on steps from the overview and directly load the step on
the screen. By default, the overview is also considered as a step and it will
be clickable. Hence we need to first disable clicking on the overview by hiding it
using CSS:

#overview { display: none }

Getting Started with Impressive Presentations

[20]

Now the other steps in overview should be directly accessible. We can enhance the
user experience by showing a cursor pointer to the step links using the following
code block:

.impress-on-overview .step {
 opacity: 1;
 cursor: pointer;
}

I have kept the overview step at the end of the presentation for explanation
purposes. You can make overview the first slide if necessary.

We now have a completed version of our first impressive presentation. Open the
chapter1.html file in the web browser and use the arrow keys or Space bar to
run the presentation. Impress presentations use the complete browser space to
run presentations by default. We will be discussing how we can limit the scope of
impress presentations to a specific portion of a web page in the upcoming chapters.

Summary
We started this chapter by looking at the background of the impress.js framework
and how it was created. Then we talked about the importance of impress.js in
creating web-based presentations and various types of usage beyond presentations.

Then we obtained a copy of the framework from the official github page and
completed the setup. Finally we created a basic impress.js presentation by explaining
the structure of the presentation and effects.

We have covered most of the basics of this framework during the chapter. Now
you should be able to create and design a simple presentation using the impress.
js framework. In the next chapter, we will be looking at the effects of impress.js in
detail and how to combine those effects to produce better presentations.

So stay tuned to create amazing effects with impress.js in the next chapter.

Exploring Impress
Visualization Effects

In this chapter, we are going to cover the impress.js effects in depth. Effects are the
core components in creating impressive visualizations. We are going to use practical
examples throughout this chapter to demonstrate the power of effects.

Impress effects are built upon pure CSS transformations, so web designers will find
these effects very interesting and easy to understand. Let's get started!

We will be covering the following topics:

• Introduction to CSS transformations
• Positioning effects
• Rotating effects
• Rotations in practice
• Scaling effects
• The importance of positioning in scaling
• Scaling in practice
• Data perspective
• impress.js under the hood

Exploring Impress Visualization Effects

[22]

Introduction to CSS transformations
CSS3 provides a wide range of effects for creating animations and working in
3D space. These effects depend on the web browser. Since these effects are still
emerging, not all web browsers will have the support for these effects. We need to
provide browser-specific syntaxes to make use of these effects. The following is a list
of browser prefixes for the most popular browsers:

• -ms-: Prefix for Internet Explorer 9
• -moz-: Prefix for Firefox
• -webkit-: Prefix for Chrome and Safari
• -o-: Prefix for Opera

Browser and device support is a key factor in designing impress presentations.
impress.js-supported browsers and devices will be discussed in detail in Chapter 4,
Presenting on Different Viewports.

In the following sections we are going to explore how impress.js uses these CSS
transform attributes to generate awesome presentation effects.

Positioning effects
A web browser provides us an infinite canvas to create designs for websites. Usually
we choose a specific portion of the browser to design our layouts to be compatible
with different screen sizes and viewports. A 960px width grid with unlimited height
will be the commonly used approach in web design. This means we are eliminating
the possibility of using the space on the top, right, and left sides of our grid. impress.
js provides the ability to position elements in a much wider range allowing us to
grab the full potential of the browser window.

The amazing thing about impress.js is that we can even position elements in the 3D
space using the z index. HTML data attributes are used to specify the positioning
information of each step which we are calling slides. The positioning of elements
can be done on the x, y, and z axis and we will be looking in depth into all the three
directions in the following section.

Chapter 2

[23]

Positioning on the x axis
We can place the elements in a horizontal direction to use positioning effects on the
x axis. Each step in this direction should be assigned with the data-x attribute and
number of pixels. Once the step transition begins we will be able to see the horizontal
sliding effects from the left of our screen to the right, or from the right to the left
depending on the values supplied for the data-x attribute. The following diagram
shows how we can slide in each direction:

As you can see, the data-x value of Step 2 is higher than the data-x value of Step 1.
The value of data-x is increased from left to right and vice versa. Even though there
are two steps displayed on screen, we will often design presentations with only one
step displayed at any given time. In such scenarios, Step 2 will be hidden in the right
section of the screen. On step transition, the x value will increase and Step 2 on the
right will slide towards the center of the screen while Step 1 will slide towards the
left. Sliding in the opposite direction can be performed by assigning a smaller x value
for Step 2.

Steps which have the same x value will overlap each other and
will not provide any effect on step transition. Make sure to avoid
overlaps when positioning your steps.

Exploring Impress Visualization Effects

[24]

Positioning on the y axis
Steps positioned on the y axis are aligned vertically on the screen. The data-y
attribute is used to define step positions in the vertical direction. On step transition,
the vertical sliding effects will be provided from bottom to top or top to bottom
depending on the data-y values of the presentation steps. The following diagram
shows how step transition happens in the vertical direction:

According to the screen, the data-y value increases from top to bottom and vice
versa. Since Step 2 has a higher data-y value, it's positioned below Step 1. When
the step transition takes place, subsequent steps will slide from the bottom to top
direction of your screen. Sliding in the opposite direction can be performed using a
smaller data-y value for Step 2.

Positioning on the z axis
Positioning on the z axis can be a difficult task compared to the positioning we
did in the previous two sections since we need to think in a 3D perspective. The
data-z attribute is used to define positions in the z direction. It's best to preview
how the steps are positioned in the z axis before we get started. This is shown in the
following diagram:

Chapter 2

[25]

We can see that all the three steps are positioned in the z direction. Step 1 contains
the data-z value of 0 and the subsequent steps are given higher data-z values.
Although each of the steps is defined with the same dimensions, it seems that the
steps are getting larger with the increase in the data-z value.

In the earlier example, the data-y values are used only for the
purpose of preventing an overlap between steps.

Steps with larger data-z values will be closest to the screen while steps with
smaller data-z values will be farthest away from the screen. Hence the size of steps
differentiates to our eyes. Since the earlier presentation contains larger values for
Step 2 and Step 3 , steps will go away from you and you will feel as if you are coming
towards the screen. There are two options now for using the data-z attribute, given
as follows:

• Keep Step 1 on top: Use lower data-z values for the remaining steps
• Keep Step 1 on bottom: Use higher data-z values for the remaining steps

impress.js does not provide any restrictions on starting points or
positioning elements on the screen. I always prefer using 0 as the value
for data attributes of the first slide and assigning minus or plus values
depending on the sliding direction I want.

Exploring Impress Visualization Effects

[26]

Now you should be able to handle positioning of the elements in impress.js
presentations. The real power of impress.js comes when you mix all the effects. Now
let's start rotations in the next section. You can use the data-positioning.html file
in source codes to see how data positioning works.

Rotating effects
In the earlier section, we learned how to use z axis positioning which showed us a
glimpse into the 3D world. A real 3D effect comes with rotations and scaling. impress.
js provides rotations around all the three axes, which can be very powerful in
designing impressive visualizations. Let's get started on using rotations.

Rotation around the x axis
We can use the data-rotate-x attribute to rotate elements around the x axis.
The x axis is positioned from the left to the right of your screen in the horizontal
direction. Let's take a look at how we can rotate around the x axis using a simple
example:

You can see Step 4 rotated around the x axis at a 90 degree angle. The following is
the code for this example. You can also work with the data-rotate-x.html file in
the source code folder for this example.

<div id="slide1" class="step slide" data-y="-400"
 data-z="-300" data-rotate-x="90" >

Chapter 2

[27]

 <div><h2>Slide 1</h2></div>
 </div>
 <div id="slide2" class="step slide"
 data-y="-200" data-rotate-x="180" >
 <div><h2>Slide 2</h2></div>
 </div>
 <div id="slide3" class="step slide"
 data-y="-400" data-z="200" data-rotate-x="270" >
 <div><h2>Slide 3</h2></div>
 </div>
 <div id="slide4" class="step slide"
 data-y="-600" data-rotate-x="360" >
 <div><h2>Slide 4</h2></div>
 </div>

Step 2 and Step 4 are completely visible on your screen and the other two steps are
partially visible since they are placed at a 180 degree angle to the screen. We have
used the data-y and data-z values to position the elements to preview the effects
clearly. Using the same positions for steps will result in overlapping. The positive
angles are used for the rotations in this example and the rotations will come from the
top to the bottom direction of your screen. We can switch the direction of the rotation
by assigning negative values for the rotation angles.

Rotation around the y axis
The y axis is positioned from the bottom to the top of your screen. We can use the
data-rotate-y attribute to rotate the elements around the y axis. As we mentioned
earlier, the positioning of the elements is critical to preview the effect clearly.
Rotation around the y axis is shown in the following example:

Exploring Impress Visualization Effects

[28]

The code for this example is given as follows. It will be similar in nature to the code
we used for the x axis. You can also work with the data-rotate-y.html file in the
source code folder for this example.

 <div id="slide1" class="step slide" data-x="-600"
 data-z="400" data-rotate-y="-90" >
 <div><h2>Slide 1</h2></div>
 </div>
 <div id="slide2" class="step slide"
 data-x="-1000" data-rotate-y="-180" >
 <div><h2>Slide 2</h2></div>
 </div>
 <div id="slide3" class="step slide"
 data-x="-600" data-z="-400" data-rotate-y="-270" >
 <div><h2>Slide 3</h2></div>
 </div>
 <div id="slide4" class="step slide"
 data-x="-200" data-rotate-y="-360" >
 <div><h2>Slide 4</h2></div>
 </div>

Step 1 and Step 3 will be displayed completely while Step 2 and Step 4 will be
partially displayed due to the 180 degree angle around the y axis. We have used
negative values for rotation angles in this example, so the rotations will go from
left to right in an anticlockwise direction. The rotation direction can be switched by
assigning positive values for step angles.

Rotation around the z axis
The z axis is placed into or out of your screen and hence not visible by default.
The data-rotate-z attribute is used to rotate elements around the z axis. Rotations
around the z axis are used in general in our daily web design tasks and will not have
any 3D effect like in the previous two examples.

impress.js provides data-rotate-z as the data attribute for
rotations around the z axis. We can just use data-rotate as the
attribute for these rotations since data-rotate-z is equal to
data-rotate in impress.js.

You can take a look at how elements are rotated around the z axis using the following
screen. Since this is similar to previous examples I am not going to discuss the
codes. You can work with the data-rotate-z.html file in the source code folder
for this example.

Chapter 2

[29]

Rotations in practice
Having completed all the rotation techniques in the previous section, we can
now move on to creating a practical application using rotations. We will be using
rotations around the z axis since it's the most widely used technique. The example
application will contain eight circles in a circular path which will be rotated once the
presentation starts. Here is a preview of what we are going to develop next:

Exploring Impress Visualization Effects

[30]

The preceding screenshot shows the overview of our presentation. Let's look at
how the first few steps are positioned in the screen using the following code:

<div id="slide1" class="step slide" data-x="-100"
 data-rotate-z="45" >
 1
 <p>Twitter</p>
</div>
<div id="slide2" class="step slide" data-x="-100"
 data-rotate-z="90" >
 2
 <p>Facebook</p>
</div>
<div id="slide3" class="step slide" data-x="-100"
 data-rotate-z="135" >
 3
 <p>Linkedin</p>
</div>

Each step is positioned at the same x value and z axis rotations are used at 45
degrees angle to each other. Using the same x value allows us to create the circular
path for the presentation steps. All the steps are given sequential numbers and some
information inside the paragraph tag. I have used popular content sharing sites as
the information.

The following code shows the necessary CSS styles for creating circles for
the application:

.slide .circle {
 border: 10px solid #FFFFFF;
 border-radius: 80px 80px 80px 80px;
 padding: 30px 50px;
 width: 100px;
}

We need to make sure that all the information inside the steps is kept hidden by
using the following CSS styles:

.future p{
 display: none;
}
.past p{
 display: none;
}

Chapter 2

[31]

Steps in impress.js presentations will have a CSS class to define the presentation's
status at any given time. The predefined classes will be active , future, and past.
We only need the contents of the active step to be visible to the audience. Hence we
define the display:none attribute for the paragraph elements of each step which has
either a future or past class.

Once the presentation starts, we are going to highlight the number inside the step
and make the content of that step visible to the audience. Let's see how our first step
looks on the step transition:

The first step number is highlighted and the content is made visible using the active
class as follows:

.active span{
 background: blue;
}
.active p{
 display: block;
 font-size: 60px;
 margin: 175px 0 20px;
}

On each step transition, the active step content will be visible and other step contents
will be hidden. This technique can be effectively used to present information about
your team, technologies used in your company, or similar concepts. Even though I
have only provided the structure for the steps, you can use images and CSS styles
to make a cool presentation using these rotation techniques. You can work with the
data-rotate-application.html file in the source code folder for this example.

Exploring Impress Visualization Effects

[32]

Scaling effects
Scaling in impress.js is much simpler compared to what we discussed in previous
sections about positioning and rotations. There is only scaling up or scaling down
and the x, y, and z axes will not have any effect on scaling. So let's get things moving
by identifying the data attribute for scaling, which will be defined as data-scale.

Scaling up and down can be considered as zoom-out and zoom-in
effects. A default data-scale value of each step is equal to 1.

Consider the following code snippet, which defines three steps with
data-scale values:

<div id="impress">
 <!-- Row 1 -->
 <div id="slide1" class="step slide"
 data-x="0" data-y="500" data-scale="1" >
 <div><h2>Step 1</h2></div>
 </div>
 <div id="slide2" class="step slide"
 data-x="0" data-y="300" data-scale="2" >
 <div><h2>Step 2</h2></div>
 </div>
 <div id="slide3" class="step slide"
 data-x="0" data-scale="4" >
 <div><h2>Step 3</h2></div>
 </div>
</div>

Step 1 has the data-scale value of 1 and Step 2 and Step 3 have the data-scale
values of 2 and 4 respectively. This means, Step 1 will be the smallest and Step 3 will
be the largest. Since we have used the same data-x value, the center of all the steps
will align perfectly. Then we have different values for the data-y attribute to display
the full contents of the slide without overlapping. Let's see the preview of our three-
step presentation.

Chapter 2

[33]

Steps are contained within other steps according to the given positions. Once the
presentation starts, Step 1 will display in its full size covering most of the screen and
other steps will not be displayed due to its large scale. Then on step transition, Step 1
will go towards the screen with a zoom-out effect and Step 1 will be displayed inside
Step 2. This process continues until the presentation completes. You can work with
the data-scale-example1.html file in the source code folder for this example.

Scaling is not relative to the scaling of other steps. Scaling is purely a
higher or lower ratio of its original dimensions. For example, Step 1
and Step 2 having a scale value of 2 does not mean that Step 2 will be
twice as large as Step 1. Both steps will be the same size.

The previous example demonstrates the simplest usage of scaling in impress.js. A
design like this can be ideal for a presentation with hierarchical data like organizational
structures or the layering of components in web application development.

We can begin with the smallest component and go upwards using a
higher data-scale value or go downwards by beginning with the
largest component and using lower data-scale values.

Exploring Impress Visualization Effects

[34]

The importance of positioning in scaling
Scaling can be used independently without combining other effects. Positioning also
makes a huge impact to the meaning of your presentation. In the previous example,
the data-x and data-y positions of steps created the hierarchical structure wherein
each single step a subcomponent of the next step. The following is a screenshot of the
same presentation with slightly different positioning:

The difference in positioning made Step 2 and Step 3 direct subcomponents of
Step 1. This time we are starting big and going smaller into sublevels, which is the
opposite of what we did earlier. When the presentation starts we can scale into the
subcomponents first and then the subelements will have the sliding effect instead
of the scaling effect. You can work with the data-scale-example2.html file in the
source code folder for this example.

These types of designs can be used to explain departments of a company and
subcomponents of each department.

Positioning is vital in designing the right kind of
presentation to match your concept.

Chapter 2

[35]

Scaling in practice
In this section, we are going to design a simple presentation to demonstrate scaling
in practical scenarios. You must have seen awesome image galleries developed
using JavaScript libraries. We can create similar galleries using impress effects with
effective usage of the overview of the presentation which we mentioned in Chapter 1,
Getting Started with Impressive Presentations.

Planning the design
We are going to use 12 image containers for our presentation with three rows
and four columns. All the image containers should be visible within the browser
window. Once the presentation starts, the first image container should scale up to
its full width. Then on the next step transition, we need to go back to the gallery
again with the first image highlighted. Then the second container will scale up and
continue the process until the presentation is complete.

Positioning is difficult to manage without an overview. I prefer
creating the overview as the first slide and removing it if
necessary once the design is completed.

An overview of our image gallery with dummy containers is given. You can work with
the data-scale-application.html file in the source code folder for this example.

Let's put the overview step into the container with the ID of #impress:

<div id="overview" class="step" data-x="2000" data-y="700" data-
scale="3">
 </div>

Exploring Impress Visualization Effects

[36]

We have used the data-x value of 2000 and data-y value of 700. These values
should be adjusted depending on the positions of our steps to get a perfect overview.
We are going to start with the overview and zoom the steps one by one while getting
back to the overview. Thus we need an overview step before each of our image step.
An overview does not contain any data since it's just used for the purpose of viewing
the complete set of steps.

The following code gives you the first row of our image gallery container:

<!-- Row 1 -->
<div id="overview" class="step" data-x="2000" data-y="700" data-
scale="3">
</div>
<div id="slide1" class="step slide" data-x="0" >
<div><h2>Step 1</h2></div>
</div>
<div id="overview" class="step" data-x="2000" data-y="700" data-
scale="3">
</div>
<div id="slide2" class="step slide" data-x="1200" >
<div><h2>Step 2</h2></div>
</div>
<div id="overview" class="step" data-x="2000" data-y="700" data-
scale="3">
</div>
<div id="slide3" class="step slide" data-x="2400" >
<div><h2>Step 3</h2></div>
</div>
<div id="overview" class="step" data-x="2000" data-y="700" data-
scale="3">
</div>
<div id="slide4" class="step slide" data-x="3600" >
<div><h2>Step 4</h2></div>
</div>
<!-- Row 1 End -->

The first row contains the fixed value of 700 for the data-y attribute. 1200 is the
difference between the data-x attributes. The scale value will be equal to 1 since we
haven't specified a value. In the next row we will change the data-y value of steps
and keep the same data-x values as the first row. Each step is wrapped around the
overview steps. I have used an ID for the first overview element and kept the others
blank. You can provide dynamic ID for each overview element when required.

Chapter 2

[37]

Now we need to highlight the elements which have already been viewed. impress.js
provides a class called .past which we can use to develop the highlighting features.
Once the step transition is completed, a past class will be implied in the previous
step. Now we can define some CSS styles on the .past class to highlight the steps
using the following code snippet:

.past{
 background:none repeat scroll 0 0 #C54B4B;
}

The final output of our image gallery presentation will look as follows when viewed
on your browser:

I have given only the structure of elements to keep things simple and make the
explanations clear. You can just place images within the step elements to make it
an awesome image gallery presentation or any other similar type of presentation.

Data perspective
We have covered all the main effects of impress.js in the previous sections. Finally,
we'll take a look at how we can use the data-perspective attribute with impress.
js presentations. Perspective determines the distance between you and the z=0 plane.
The following is the definition given on CSS perspective by Mozilla.org:

The perspective CSS property determines the distance between the z=0 plane and
the user in order to give to the 3D-positioned element some perspective. Each 3D
element that is placed between the z=0 and the user is enlarged, each 3D-element
with z<0 is shrinked. How much deformation is defined by the value of this
property.

Exploring Impress Visualization Effects

[38]

As per the definition, the perspective attribute will only affect elements in 3D
space. impress.js uses 1000 as the default value for the data-perspective attribute.
You can define higher or lower values to increase or decrease the distance. Let's
look at our rotation example in different perspective values to get an idea on how
it works. Make sure to define the data-perspective attribute on the #impress
element instead of individual steps as it affects all the steps.

We created an impress rotation example around the y axis in an earlier section. The
following screen displays the y axis rotation example with the data-perspective
value of 500:

The following screen displays the y axis rotation example with the data-
perspective value of 1500:

Chapter 2

[39]

The following screen displays the y axis rotation example with the data-
perspective value of 3500:

Considering the preceding three screens shown at different data-perspective
values, we can clearly see that Step 2 and Step 4, which are placed in the z direction,
are coming closer to us when the value is decreased and going away from us when
the value is increased. Now let's look at how it works on the data-perspective
value of 0:

We can see a considerable change in the design when we use a value of 0. Step 1 and
part of Step 2 is displayed and steps in the z direction are completely hidden.

Setting data-perspective to 0 will completely
remove the 3D effects on your elements.

Make sure you understand how perspective in CSS works before using it in your
presentations since it can provide unusual behavior if not used wisely. You can use
the data-perspective.html file and change the perspective value to see how it
works in different scenarios.

Exploring Impress Visualization Effects

[40]

impress.js under the hood
We learned how effects in impress work and various kinds of techniques and
scenarios. I am sure you would like to explore the core of the impress.js library and
learn how these effects really work inside the library, so in this section we'll look at
the core code to find the effects.

Once the presentation is loaded on the browser, impress.js will call its initStep
function to initialize all the steps. The following is the code for the iniStep function:

var initStep = function (el, idx) {
 var data = el.dataset,
 step = {
 translate: {
 x: toNumber(data.x),
 y: toNumber(data.y),
 z: toNumber(data.z)
 },
 rotate: {
 x: toNumber(data.rotateX),
 y: toNumber(data.rotateY),
 z: toNumber(data.rotateZ || data.rotate)
 },
 scale: toNumber(data.scale, 1),
 el: el
 };
 if (!el.id) {
 el.id = "step-" + (idx + 1);
 }
 stepsData["impress-" + el.id] = step;
 css(el, {
 position: "absolute",
 transform: "translate(-50%,-50%)" +
 translate(step.translate) +
 rotate(step.rotate) +
 scale(step.scale),
 transformStyle: "preserve-3d"
 });
};

Chapter 2

[41]

All the elements with the .step class will be passed to this function. Then the
function extracts the values of each data-attribute and assigns it to a variable
called step. Then it will be passed to the CSS function to generate respective CSS
styles for the impress effects. The code for the CSS function is as follows:

var css = function (el, props) {
 var key, pkey;
 for (key in props) {
 if (props.hasOwnProperty(key)) {
 pkey = pfx(key);
 if (pkey !== null) {
 el.style[pkey] = props[key];
 }
 }
 }
 return el;
};

The css function extracts all the properties from the props variable and calls the pfx
function to generate browser-specific CSS transformations for the given effects. Once
the effects are applied, our step will look like the following code, which uses pure
CSS transformations with impress data attributes:

<div data-scale="3" data-rotate="90" data-y="-1000" data-x="-1000"
class="step slide active present" id="intro"
style="position: absolute;
-moz-transform: translate(-50%, -50%) translate3d(-1000px, -1000px,
0px) rotateX(0deg) rotateY(0deg) rotateZ(90deg) scale(3);
-moz-transform-style: preserve-3d;">
 </div>

Consider the values of the style attribute which uses pure CSS transformations.
Since I am using Firefox as the browser, the prefix -moz is generated. The data-x and
data-y values have been converted as the first two parameters of the translate3d
function while the data-rotate is converted as the rotateZ function. Other
attributes will also be converted to similar CSS styles when specified.

Having learned impress effects and their usage, now you should be looking at
these awesome examples and demos from the official github page for impress.js
at https://github.com/bartaz/impress.js/wiki/Examples-and-demos.

Exploring Impress Visualization Effects

[42]

Summary
Throughout this chapter, we worked with practical examples to explore the
impress.js effects and learn the basic syntaxes. In-depth usage of positioning,
scaling, and rotations were discussed during this chapter. Finally, we learned
how CSS perspective works inside the web browser.

We completed the chapter by looking at the core impress.js code related to
generating transform effects. Now you will be able to create impressive effects
in your presentations and customize the library code if necessary.

In the next chapter, we are going to dig deeper into the impress code to explore the
API functions, events, customizing controls, and configuring of the impress.js library.

Diving into the Core
of impress.js

The readability and extendibility of impress.js code makes it easy for developers
to provide their own implementations of the functions. Although we can use the
provided syntax and create impressive visualizations, it is important to dig into
the core code and explore the functionalities as developers.

The developer of impress.js wants to keep the library as simple as possible by
providing the main presentation creation functionalities. In order to figure out the
true potential of the library, we have to take advantage of its open source license and
add new functionalities by customizing the core code. Throughout this chapter, we
are going to explore the main core functions and see how we can effectively use them
to create better presentations.

In this chapter, we are going to cover the following topics:

• impress.js configuration
• Understanding the impress API functions
• Automating presentations
• Creating custom transition timing
• impress.js step events
• How to use the step class
• Working with keyboard configurations
• Assigning custom keys for custom events
• Handling the step click event

Make sure you work with the source code files in order to identify and make
customizations to core code as you learn. By the end of this chapter, you will have a
proper understanding of how impress.js works inside the core code.

Diving into impress.js Core

[44]

impress.js configuration
We have worked with the default configurations of impress.js up to this point.
Generally, these configurations are capable enough to handle any kind of
presentation or application created with the library. In certain advanced scenarios,
the user might need to alter these configuration options to achieve custom
functionality. Hence we are going to cover the default configurations in this section.

Default configurations
Default configurations of the impress library are located in the impress.js file using
the defaults variable. The following code shows the default configuration options
and their respective values:

var defaults = {
 width: 1024,
 height: 768,
 maxScale: 1,
 minScale: 0,
 perspective: 1000,
 transitionDuration: 1000
};

Let's get an idea about each of these options in detail:

• width: This option is used to control the width in the window scaling
process. This value is converted into pixels through the code. Using a
higher value than 1024 will narrow the width of your steps.

• height: This option is used to control the height in the window scaling
process. This value is converted into pixels through the code. Using a
higher value than 768 will narrow the height of your steps.

• maxScale: This option is used to control the maximum scale in the window
scaling process. Reducing this value may change the look and feel of
presentation on larger screens.

• minScale: This option is used to control the minimum scale in the window
scaling process. Increasing this value may change the look and feel of your
presentation on smaller screens.

• perspective: This option defines the distance from the presentation
elements with the z axis. Using a value of 0 will prevent any 3D effects
in your presentation.

Chapter 3

[45]

• transitionDuration: This option specifies the time between two step
transitions. The default value of 1000 means that the steps will be transferred
in 1 second. You can increase the value in multiples of 1000 to increase the
time duration between steps.

Customizing configurations
Each of these configurations should be defined in the #impress presentation
container. Using these attributes for the steps will not generate any effect on the
presentation. Let's see how we can use these attributes effectively.

Configuring the width and height
We need to use data attributes on the #impress element to configure the width
and height. data-width and data-height will be the respective attributes.
Consider the following code for the basic configuration of width and height attributes
with default values:

<div id="impress" data-width="1024" data-height="768"></div>

Here is a preview of the screen of a step presentation with the default width and
height configurations:

Now we can adjust the width and height and see how it works on different values:

<div id="impress" data-width="2048" data-height="1536" ></div>

Diving into impress.js Core

[46]

The following is the updated screen of our presentation:

After the modification, the screen has narrowed and you can completely see the
second step as well. Thus make sure to use the width and height attributes according
to your screen sizes. You can find the example in the data-width-config.html file
inside source codes.

Configuring the minScale and maxScale
These two properties will also be used in calculations of presentation size according
to the window size. data-min-scale and data-max-scale will be the respective
attributes for these properties. The example presentation in the default scaling
configurations is given as follows:

<div id="impress" data-min-scale="0" data-max-scale="1" ></div>

The presentation layout that will be displayed is similar in nature to the previous
screen when the data-max-scale is decreased and data-min-scale is increased.
The working example is located in the data-scale-config.html file.

Configuring the perspective
Perspective can be defined using the data-perspective attribute. Increasing the
value will increase the distance between the elements and the z index and hence the
3D elements will display deeper in the screen. Decreasing the value will reduce the
z index and element distance and hence look closer to the screen. Since perspective
was explained using examples in Chapter 2, Exploring Impress Visualization Effects,
I am not going to go into detail here.

Configuring the transition duration
The time between the transitions of two steps can be defined using the data-
transition-duration attribute on the #impress element. The following code
shows the impress container with a customized transition duration:

<div id="impress" data-transition-duration="2000"></div>

Chapter 3

[47]

Make sure you use the proper value for data-transition-
duration according to your presentation requirements. Increasing
the value too much can cause the presentation to slow down and
remove the smoothness in transitions.

Looking at configurations inside the core
Now we have identified the default configuration elements, its purposes and default
values, let's see how these values are used inside the library. Once the presentation is
started, the impress init function will be called. Inside the function we can find the
following code snippet:

var rootData = root.dataset;
config = {
 width: toNumber(rootData.width, defaults.width),
 height: toNumber(rootData.height, defaults.height),
 maxScale: toNumber(rootData.maxScale, defaults.maxScale),
 minScale: toNumber(rootData.minScale, defaults.minScale),
 perspective: toNumber(rootData.perspective,
 defaults.perspective),
 transitionDuration: toNumber(rootData.transitionDuration,
 defaults.transitionDuration)
};
windowScale = computeWindowScale(config);

In the given code, the root will be the #impress element. All the details of the
element are passed using root.dataset to the rootData variable. Then each of the
configuration options is passed to the toNumber function with a specified value and
default value. The following is the implementation of the toNumber function:

var toNumber = function (numeric, fallback) {
 return isNaN(numeric) ? (fallback || 0) : Number(numeric);
};

The function checks if we have specified a custom numeric value using the isNaN
function and returns a default or custom value accordingly. Next, impress passes
all the configuration values to the computeWindowScale function using the config
variable. computeWindowScale will apply these attributes to the presentation
window.

Diving into impress.js Core

[48]

Understanding the impress API functions
impress.js comes up with four useful API functions that can be used to customize
the functionality of presenting information in various techniques. We have already
worked with the init function throughout the previous chapters. In this section, we
are going to focus on three more API functions. Before we dig into the details, let's
create an impress object to use API functions, using the following code:

var api = impress();

We used impress().init throughout the previous chapters to initialize presentations.
In order to use API, we need the impress object as given in the preceding code. Once
created we can call API methods on the impress object with ease.

The following list contains the impress.js API methods and their
respective functionality:

• api.init(): This method initializes the presentation
• api.next(): This method moves to the next step of the presentation
• api.prev(): This method moves to the previous step of the presentation
• api.goto(id): This method moves the presentation to the step given by its

index number ID or the DOM element

Inside the next function
The api.next() function moves the steps forward once the presentation starts. Let's
see how next works inside the core code function:

var next = function () {
 var next = steps.indexOf(activeStep) + 1;
 next = next < steps.length ? steps[next] : steps[0];

 return goto(next);
};

First it gets the active step of the current presentation using the steps array created
in the initialization process.

steps is an array created in the initialization process
to store all the elements with the .step class.

Chapter 3

[49]

Then, it increments the step by 1 and checks whether the current step is the last step
on the presentation. Then, it loads the index of the next step or the first step based on
the result of the condition check. Finally, it calls the goto function with the retrieved
index to make the step transition move forward. The goto function will be discussed
after the next section.

Inside the prev function
The api.prev() function moves the steps backwards once the presentation starts.
Let's see how prev works inside the core code function:

var prev = function () {
 var prev = steps.indexOf(activeStep) - 1;
 prev = prev >= 0 ? steps[prev] : steps[steps.length-1];

 return goto(prev);
};

The prev function works opposite to the next function discussed earlier. It retrieves
the active step and checks if it's the first step of the presentation. Then, it loads the
last step or previous step based on the result of the condition check. Finally, it calls
the goto function to make the step transition in a backward direction.

Inside the goto function
The api.goto function acts as the base for step transition. Both prev and next
functions also use its functionality for navigation between steps. We need to pass the
step number or any valid HTML element as the required parameter and a transition
time as the optional second parameter. Consider the following example, which calls
step number 4 to load in 4 seconds:

api.goto(3,4000);

impress.js uses 0 based indices for presentation steps. Therefore we
have to pass 3 as the parameter for the goto function to get to the
fourth step.

Let's see how the goto function produces navigation inside the core code
function. I am going to filter the navigation-related codes for the explanations
to make things clearer:

var goto = function (el, duration) {
 if (!initialized || !(el = getStep(el))) {
 // presentation not initialized or given

Diving into impress.js Core

[50]

 element is not a step
 return false;
 }
 window.scrollTo(0, 0);
 // Rest of the code
}

The goto function accepts the element and duration as the two parameters. Then, it
checks whether the presentation is initialized. Next, it uses the scrollTo function to
traverse to the top page. The necessity of the scrollTo function is explained in the
code comments ahead.

Sometimes it's possible to trigger focus on the first link with some
keyboard action. The browser, in such a case, tries to scroll the page
to make this element visible. (Even that body overflow is set to
hidden) and it breaks our careful positioning. So, as a lousy (and lazy)
workaround, we will make the page scroll back to the top, whenever the
slide is selected.

Now, we'll see how the steps are processed:

 var step = stepsData["impress-" + el.id];
 if (activeStep) {
 activeStep.classList.remove("active");
 body.classList.remove("impress-on-" + activeStep.id);
 }
 el.classList.add("active");
 body.classList.add("impress-on-" + el.id);
 // Remaining Codes
}

First, it checks for an active step and removes the active class and other
dynamically assigned CSS classes. Then, the active class and other dynamic classes
are added to the element which is passed as the first parameter to the goto function.
This is seen in the following code snippet:

window.clearTimeout(stepEnterTimeout);
stepEnterTimeout = window.setTimeout(function() {
 onStepEnter(activeStep);
}, duration + delay);

In the last part of the function, the code snippet clears the active timeout and creates
a function to be executed within the specified delay to make the step transition. Now,
we have a basic idea about the functionality of API functions. Let's see how we can
use these API functions to make something useful.

Chapter 3

[51]

Automating presentations
In real life, presentations will be used with manual controlling on most occasions
since it is hard to automate presentations with predefined time intervals. You never
know how much time it will take to explain a slide and whether the audience will
come to you with questions expecting you to answer.

Automating presentations can be used to improve your skills as a presenter. You are
not always going to get enough time to do your presentation. Sometimes, you will be
bound to deliver the presentation in a limited time period. In such scenarios, you can
automate the presentation using certain intervals and try to match the explanations
with step transitions to get some practice for a live occasion. Here, we are going to
discuss how to use API functions to automate presentations.

The first thing we have to do is create a few steps for the presentation. Since we have
already created some presentations, you should be familiar with the syntax. Once the
steps are completed we can use simple JavaScript code to automate the presentation.
Our script code will look as follows:

<script>
 var api = impress();
 api.init();

 $(document).ready(function(){
 var interval = setInterval(function(){
 api.next();
 },5000);
 });
</script>

First we create the impress object by calling the impress() function. Then, we call
init on the created object to initialize the presentation. After that we can use the
JavaScript setInterval function to create repetitive function calling in a given time
period. We have used jQuery in this example, but it is not a must. We can just use
plain JavaScript code.

Inside the anonymous function, we call the api.next() function to make the step
transition. In the given scenario, the step transition will happen every 5 seconds in
a forward direction. You can try the working examples using the presentation-
automation-next.html and presentation-automation-previous.html files.

Diving into impress.js Core

[52]

Use api.prev() inside the anonymous function to automate the step
transitions in a backward direction.

In the given scenario, the time limit for each step transition is the same. That's not
practical in real scenarios. Some slides need more time while other slides need
limited time. So let's see how to address that issue.

Creating custom transition timing
We have to start this process by defining a custom format to store steps and
transition durations. We will be using a JavaScript array which looks
like the following:

var step_transitions = [
 { "slide": 1, "duration":3000 },
 { "slide": 2, "duration":5000 },
 { "slide": 1, "duration":5000 },
 { "slide": 3, "duration":5000 },
];

We are using step number and duration between each step transition in the given
array. Only a few astute readers will notice that the step numbers are not in order.
That means we can use any step number at any given time making the automation
bidirectional instead of forwards or backwards.

You can create an automated flow of your presentation steps with
this technique. Moving forward or backward in any given time is as
simple as placing a record in the step_transitions array.

Now, let's go through the implementation of this automation technique:

$(document).ready(function(){
 var time_frame = 0;
 step_transitions.filter(function (steps) {
 time_frame = time_frame + steps.duration;
 setTimeout(function(){
 api.goto(steps.slide);
 },time_frame);
 });

});

Chapter 3

[53]

We created a variable called time_frame to keep the total time. Then, we used the
JavaScript filter function to traverse through the array and filter the elements. On
each step we added the specified duration for the step from the array to the total
time and passed it to the setTimeout function. This setTimeout function will create
timeouts for each step. Then, we used the step number from the slide array as the
argument for the goto function. Once the presentation starts, each step will be called
in for a given time period. The process is previewed in the following screenshot:

This technique makes it possible to use different transition timings for different
steps. The presentation will start from Step 1, moving to Step 2, Step 3, back to
Step 2, and finally Step 4 again. You can find the example code for this example
in the presentation-automation-custom.html file. This technique can be used
effectively to create website tours or product tours.

impress.js step events
JavaScript provides a list of in-built events and we can also use event listener
functions on those events. Likewise, we can also create our own custom events.
impress.js provides two custom events for handling step transition functionality.
stepenter and stepleave is used in the core code to handle these events. Let's take
a look at the implementation in the impress.js file:

root.addEventListener("impress:stepenter", function (event) {
 event.target.classList.remove("past");
 event.target.classList.remove("future");
 event.target.classList.add("present");

Diving into impress.js Core

[54]

}, false);

root.addEventListener("impress:stepleave", function (event) {
 event.target.classList.remove("present");
 event.target.classList.add("past");
}, false);

In each step transition, the stepleave event of the current step is fired first, followed
by the stepenter event of the next step. Inside the stepenter event, we remove the
past and future classes and add the present class to make it an active step. In the
stepleave event we remove the present class and add the past class to define it as
already viewed.

The impress step classes are detailed as follows:

• future: These steps are not displayed yet
• past: These steps are already displayed
• present: This step is displayed currently in the presentation

We can use these custom impress events to provide our own functionality without
modifying the core library code. Here is how the customizations are done inside
your HTML file:

<script>
 $(document).ready(function(){
 document.addEventListener
 ("impress:stepenter", function (event) {
 // Code for step enter
 }, false);

 document.addEventListener
 ("impress:stepleave", function (event) {
 // Code for step leave
 }, false);
 });
</script>

Inside the HTML file, add the two events as given in the example and create custom
code inside the function. This functionality is suitable for changing the CSS styles of
steps dynamically through the presentation.

Chapter 3

[55]

How to use the step class
impress.js uses the step class to identify an item as a step in the presentation and
apply necessary effects. At any given stage, each step has one of the three classes
present, past, or future. In the previous chapters, we learned how to use these
classes to provide custom functionality. Now we are going to look at the life cycle
of a step using these three classes.

Each step on the impress presentation is given the class future on initialization.
When the step becomes the current active step, the present class will be assigned
and the future class will be removed. In the next step transition, the current step
is assigned the class past and next step becomes present. After that the last step
presentation will start again from the beginning and present class will be assigned.
This cycle continues until you stop the presentation.

Diving into impress.js Core

[56]

The step will have the future class only once throughout the
presentation. Even if you run the presentation multiple times, the future
class will not be assigned after the first cycle. From the second cycle
onwards, the step will switch between the past and present classes.

Working with keyboard configurations
Having control over your presentation is essential in situations where we have
time constraints for completing the presentation. We can either choose to run
the presentation manually or automatically as we did in the previous section.
In either case, control options play a vital role. impress.js comes in with in-built key
configurations for controlling the presentation. Throughout this section,
we will be covering default impress keys and how to configure your own for
custom functionality.

Default keyboard configurations
The main functionality of any presentation is to step forward or backward. Impress
uses Tab, the Space bar, Page Down, the down arrow, and the right arrow as the keys
for navigating forward. Backward navigation is done using Page Up, the left arrow,
and the up arrow keys. Let's see how keyboard configurations are created inside
the code.

Inside the impress core
Keyboard configurations are created inside the impress.js file but first we'll take a
look at how the default functionality of keys is prevented using the following code:

document.addEventListener("keydown", function (event) {
 if (event.keyCode === 9 || (event.keyCode >= 32
 && event.keyCode <= 34) || (event.keyCode >= 37
 && event.keyCode <= 40)) {
 event.preventDefault();
 }
}, false);

Each key in the keyboard has a default functionality. For example, the Space bar
will create spaces and Tab will create tabs. First, we need to disable the default
functionality to make these keys available for the functions of our application. We
can use the preventDefault method of the keydown event to disable the default
functionality. Now, in the following code, we can see how default configurations for
functions are done inside the core code:

Chapter 3

[57]

document.addEventListener("keyup", function (event) {
 if (event.keyCode === 9 || (event.keyCode >= 32
 && event.keyCode <= 34) || (event.keyCode >= 37
 && event.keyCode <= 40)) {
 switch(event.keyCode) {
 case 33: // pg up
 case 37: // left
 case 38: // up
 api.prev();
 break;
 case 9: // tab
 case 32: // space
 case 34: // pg down
 case 39: // right
 case 40: // down
 api.next();
 break;
 }

 event.preventDefault();
 }
}, false);

First we check for the pushed key using keyCode of the event. The key code of each
assigned key is included inside the if statement. Then we assign Page Up, and the
left and up arrows to the prev function using the switch statement. The api.prev()
function is called on specified keys. Similarly, we assign Page Down, Tab, the Space
bar, and the right and down arrow keys for the api.next() function.

Using the arrow keys, the Page Up, Page Down buttons, and, Space bar is quite
common in presentation navigation, but using the Tab key for navigation is an
uncommon technique. There is a special reason for choosing the Tab key. Let's see
what Bartek Szopka says about choosing the Tab key:

This one is quite controversial, but the reason it ended up on this list is quite
an interesting story... Remember that strange part in the impress.js code where
window is scrolled to 0,0 on every presentation step, because sometimes browser
scrolls viewport because of the focused element? Well, the [tab] key by default
navigates around focusable elements, so clicking it very often caused scrolling to
focused element and breaking impress.js positioning.

I didn't want to just prevent this default action, so I used [tab] as another way to
moving to next step... And yes, I know that for the sake of consistency I should add
[shift+tab] as opposite action...

Diving into impress.js Core

[58]

Assigning custom keys for custom
events
We might not be familiar with the default keys used for impress presentations. In
such cases, we can assign our own keys for existing functions and new keys for
new functions. Let's see how we can modify the code to add new keys to existing
functionalities. Let's add the letter p for previous and n for next.

document.addEventListener("keyup", function (event) {
 if (event.keyCode === 9 || (event.keyCode >= 32
 && event.keyCode <= 34) || (event.keyCode >= 37
 && event.keyCode <= 40) || event.keyCode === 78 ||
 event.keyCode === 80) {
 switch(event.keyCode) {
 case 80: // letter p

 // key codes for default previous keys
 api.prev();
 break;
 case 78: // letter n

 // key codes for default next keys
 api.next();
 break;
 }

Each key in the keyboard has a specific character code. First, we have to find the
character code, also known as the key code, of the keys we want to assign into our
impress presentation. We can find these character codes by searching for JavaScript
Char Codes in a search engine. Once we get the specific key codes for the letters p and
n, add it to the switch statement, as highlighted in the code, to assign the keys. Then,
modify the if statement on top of the switch statement to add the new keys. Also,
you have to add those key codes into the keydown event to prevent any
default behavior.

Adding new keys for new events
We can create new functions and assign custom keys to impress presentations by
modifying the existing switch statement. Earlier, I mentioned the necessity for
having an overview step. We'll just add the letter o as the key for the overview step.
The implementation for the overview step keys will look as follows:

Chapter 3

[59]

case 79:
 var overview_step = document.
 getElementById("overview");
 api.goto(overview_step);
 break;

First, we have to find the overview of the presentation using its ID. 79 will be the key
code for the letter o. We assume that #overview will be used for the overview step of
any presentation. Once we get the element, we can use the goto function to directly
traverse to the overview slide.

Now, let's create two new functions to traverse to the first and last slide of the
presentation, using the following code snippet:

case 70:
 api.goto(0);
 break;

case 76:
 api.goto(-1);
 break;

In the code given, 70 and 76 will be the key codes of letters f and l respectively.
Impress presentations has a zero-based index. Hence we can traverse to the first
step by using the index 0 on the goto function. Similarly, we can use the index -1 to
traverse to the last step. It's important to note that all the new keys used inside the
switch statement need to be added to the if statement and keydown event.

impress.js provides a simplified method for assigning keys to new functionalities.
Make sure you customize and add new keys in your own presentations. You can
work with the keyboard.html file and impress-keyboard.js files for examples in
this section.

Handling the step click event
Apart from the keys discussed in the previous section, impress.js provides a click
event on each step. We can directly move to any step by clicking on the step.

Ideally we should see more than one slide to use the click
event. Generally, we will have steps covering the complete width
and height of the screen, so we can only use click event in an
overview step for most cases.

Diving into impress.js Core

[60]

Let's see how the click event is handled inside the core impress code:

document.addEventListener("click", function (event) {
 var target = event.target;
 // find closest step element that is not active
 while (!(target.classList.contains("step") && !target.classList.
contains("active")) &&
 (target !== document.documentElement)) {
 target = target.parentNode;
 }

 if (api.goto(target)) {
 event.preventDefault();
 }
}, false);

This code first gets the target element on the click event. Then, it checks if it
contains the step class to make sure it is an actual step in the presentation. Next, it
checks if the target is the current step using the active class. Then, it traverses to the
target element using the goto function.

Now we have covered all the necessary details for working with impress core code.

Summary
impress.js provides well organized source code for customizing existing
functionalities and extending core functionalities by adding new sections. Default
configuration options are provided for general purpose usage. Customizations can
be made to default configurations to suit your needs.

The library is built upon four simplified API functions for presentation, initialization,
and transition. We can take advantage of the API functions by specifying and calling
them in our own code to provide custom behaviors, such as automating presentations.

Step transitions are build upon well organized processes using CSS classes. Each
step, at any given time, is given a specific state and it can be used to add different
behaviors to presentations.

Finally, we discussed keyboard configurations and managing your own keys for
impress functions. Before moving on to the next chapter, I recommend you work
with demo files and understand the core concepts properly.

In the next chapter, we are going to look at handling impress presentations in different
viewports including mobile devices. So stay tuned for a chapter full of excitement.

Presenting on Different
Viewports

Presentations used to be created and run fullscreen. Even though impress.js
was built to create presentations, there are various other implementations for it.
It's thus necessary to learn the viewports and devices to take advantage of all the
features in impress.js.

We used fullscreen presentations throughout the previous chapters. In this chapter,
we are going to look at how to use impress.js inside a container. Finally, we are going
to see the compatibility of impress.js in mobile and tablet devices.

In this chapter, we are going to cover the following topics:

• Fullscreen presentations
• Using impress.js inside a container
• Developing a content slider
• impress.js presentations on mobile devices
• Issues in designing for mobile devices
• Best design practices for mobiles devices

Fullscreen presentations
We have created presentations utilizing the full browser width and height
throughout this book. This is the default behavior of the impress.js library. On one
hand we have the advantage of designing in a larger viewport inside the infinite
canvas, and on the other a visible portion of the presentation design varies based on
your screen size. So it's hard to control the visible area with different screen sizes.

Presenting on Different Viewports

[62]

Designing for fullscreen or designing inside a specified container depends
on your requirements. The following are some of the practical usages of
fullscreen presentations:

• Slide presentations
• Single page websites

Using impress.js inside a container
Designing inside a container is much easier compared to fullscreen presentations
since we have full control over the visible area. This is a very useful technique when
using impress.js, different from its default functionality.

The following are some of the practical usages of impress.js inside a specific
container:

• Image galleries
• Content sliders
• Personal portfolios

We will be creating a content slider to learn how impress.js works inside
a specified container.

Developing a content slider
Content sliders are very popular components in website design. Most websites have
a slider on the homepage to highlight important content within a limited space.
impress.js is developed in a way that we can add new custom functionality with ease.
Presentations can easily be converted to content sliders with minimum customizations.

Throughout the next section, we are going to build a fully functional content slider
from scratch.

Planning the design
Sliders contain steps with HTML contents. This is similar to what we did in previous
presentations. But this time, the slider will be created inside a container with
predefined dimensions instead of fullscreen. Let's now take a look at the common
functionalities of a slider before we get started:

• Slides play automatically
• Navigation controls for previous and next slides

Chapter 4

[63]

• Play/pause functionality
• Slide numbers for direct traversing
• Highlights the active slide number

Here is a preview of the slider we are going to develop in this section:

Designing slides
The first step is to add the steps to the #impress element and initialize the library.
I'll be using basic content for these steps. Feel free to add real content and styles with
CSS using the source file slider.html:

<div id="impress">
 <div id="slide1" class="step slide" data-x="640"
 data-y='440' >
 <div><h2>Slide 1</h2></div>
 </div>
 <div id="slide2" class="step slide" data-x="-2500"
 data-y='-1200' data-rotate="60" >
 <div><h2>Slide 2</h2></div>
 </div>
 <div id="slide3" class="step slide" data-x="2500"
 data-y='1200' data-z='200' >
 <div><h2>Slide 3</h2></div>
 </div>
 <div id="slide4" class="step slide" data-x="2500"
 data-y='1200' data-z='1500' >
 <div><h2>Slide 4</h2></div>
 </div>
</div>

Presenting on Different Viewports

[64]

We have four slides with simple content inside the #impress element. Initialize the
library by assigning the impress object to a variable, as we did in Chapter 3, Diving
into the Core of impress.js. We haven't done anything new yet. So the presentation will
be shown in fullscreen.

Wrapping the presentation inside a container
Now we have to restrict the presentation area for the slider by wrapping the
presentation inside a specific container. Create a new element with the ID #wrap
and place the #impress element inside it, as shown in the following code snippet:

<div id="wrap">
 <div id="impress">
 // Content for steps
 </div>
</div>

Once inserted, use the following styles on the #wrap element to make the
presentation limited to a certain area of the browser instead of the full screen:

#wrap{
 background: none repeat scroll 0 0 #EEEEEE;
 border: 10px solid #F8F8F8;
 border-radius: 10px 10px 10px 10px;
 height: 460px;
 margin: 20px auto;
 outline: 1px solid #cfcfcf;
 overflow: hidden;
 position: relative;
 width: 900px;
}

The presentation is limited to a specific area by providing a fixed width and height
for the wrapper element. overflow: hidden allows us to hide elements beyond
the scope of the visible area to avoid generating unnecessary scrollbars. Now the
presentation will be center aligned on your screen with limited dimensions and will
look similar to the other JavaScript sliders. Let's create the slider functionalities.

Playing the slider automatically
Generally, the slider should play automatically once the page is loaded. This is not a
new functionality since we implemented it in the previous chapter. We are going to
use jQuery to support DOM manipulation. Let's take a look at the code for auto
playing. It is as simple as using the api.next() function inside the JavaScript's
setInterval function.

Chapter 4

[65]

$(document).ready(function(){
 interval = setInterval(function(){
 api.next();
 },3000);
});

Creating navigation controls
Most sliders will have previous and next buttons for traversing to the adjacent
slides. We are going to use these navigation buttons outside the slider. You can
place it inside according to your preferences. First we have to create the buttons for
navigation as follows:

<div class="navigation">

</div>

Add this code snippet right after the #wrap container. Once the button is clicked, the
respective jQuery function will be called to traverse to the adjacent slide, as shown
in the following code:

$("body").on("click", ".prev-btn", function(){
 api.prev();
});
$("body").on("click", ".next-btn", function(){
 api.next();
});

The custom function used here will call the next and previous functions of the
impress.js API using the impress object generated in the initialization. Now you
should be able to use these navigation buttons to access adjacent slides.

Creating the play/pause features
Ideally, we should have the facility to pause the slider and play the slider at any given
time. First, we have to define a button to provide play/pause functionality. Add the
following code after the navigation element to create the play/pause buttons:

<div id="play-pause" class="play-pause pause-btn" >

</div>

Presenting on Different Viewports

[66]

Initially, the pause button is displayed since the presentation has already started. the
CSS class pause-btn is used to display and handle the pause functionality. Similarly,
play-btn will be used to handle play functionality. Consider the implementation of
these buttons:

$("body").on("click", ".pause-btn", function(){

 $(this).addClass("play-btn");
 $(this).removeClass("pause-btn");
 $("#play-pause").find("img").attr("src",
 "images/Aqua-Play-icon.png");
 clearInterval(interval);
});

First, we assign the jQuery live click event to the pause button. Once the button
is clicked we remove the CSS class for the pause button and add the class for
the play button. Then, we change the image of the button according to play/
pause functionality. Finally, we clear the automatic playing of the slider using the
clearInterval function to pause the slider.

Similarly, we can handle the play functionality using the following code:

$("body").on("click", ".play-btn", function(){
 $(this).addClass("pause-btn");
 $(this).removeClass("play-btn");
 $("#play-pause").find("img").attr("src",
 "images/Aqua-Pause-icon.png");

 interval = setInterval(function(){
 api.next();
 },3000);
});

Most of the code is similar to the pause button handling code. For the play button,
we need to use the setInterval function instead of clearInterval to keep the
presentation moving to the next step. Now you have the capability of playing and
pausing the slider at any given time.

Adding slide numbers
Sliders generally contain pagination like navigation to traverse directly to any given
slide. Some sliders use dots or circles while other slides use numbered navigation
buttons. We will be using numbered buttons inside the slider. Let's add the
numbered buttons to the slider.

<div class="pagination"></div>

Chapter 4

[67]

We are going to generate numbered buttons dynamically instead of hard coding
in the file. So we just need to add a container with the class pagination, after the
#impress element. Now we'll go to the implementation of numbered buttons.

var length = $(".step").length;
for(i=0;i<length;i++){
 $(".pagination").append("<div class='page-num
 pag-slide"+(i+1)+"' onclick='api.goto("+i+")'
 >"+(i+1)+"</div>");
}

Initially, we calculate the number of steps on the page load. Then, we assign a button
with a dynamic sequential number while traversing through each step. We call the
goto function of the API, once the user clicks on the number.

Highlighting the active slide
Since I have used content such as Slide 1, Slide 2, we know which one is the current
slide. When the real content is used there will not be any numbers on the slides, so
we should have a method of identifying the current slide. We can highlight the active
slide to provide this feature. Consider the following code:

document.addEventListener("impress:stepenter",
function (event) {
 var page_step = $(".active").attr("id");
 $(".pagination").find(".pag-"+page_step).
 addClass("active-bullet");
}, false);

document.addEventListener("impress:stepleave",
function (event) {
 $(".pagination").find(".page-num").
 removeClass("active-bullet");

}, false);

We can use stepenter and stepleave events to create the highlighting
functionality. On stepenter we find the active slide using the active class that
assigns a new class called active-bullet to highlight the current slide number.
Similarly, we remove the active-bullet from the current step on step leave event.

Now we have completed developing the slider with impress.js. You should have
a fully functional slider ready to use in your application. Try adding your own
customizations to make it more attractive.

Presenting on Different Viewports

[68]

impress.js presentations on mobile
devices
Impress is widely used as a presentation creation library. Presentations are created
using laptops or desktop computers in common scenarios, but it is a common
technique to embed presentations inside web pages, so mobile device users should
be able to view the presentations without issues.

The impress.js library was originally built to work with web browsers which support
CSS transforms. Hence it doesn't work on most of the mobile device browsers which
do not have support for CSS transform capabilities.

Even though impress presentations will not work on most mobile
devices, iPad and iPhone devices provide support for its features and
animations. New versions of browsers are released regularly to provide
more features. Hence we can expect more browsers to support impress
presentations in the near future.

In scenarios where we use impress.js as embedded presentations, compatibility with
mobile devices has to be considered and the design should be adjusted.

Unfortunately, we don't have a workaround for applications such as
sliders, galleries, and single page websites in mobile devices due to
the higher usage of custom functionality and impress effects.

Issues in designing for mobile devices
Basically, we have to provide an information message to the user in scenarios
where the browser doesn't have the support for impress.js functionality. This is
handled by the core code inside the library. Handling browser fallback methods and
customizations will be discussed in Chapter 6, Troubleshooting.

Providing a fallback message doesn't mean we are done with handling impress.js for
mobiles. Effects such as scaling, transforms, and rotations might not work on those
devices. Still, the user should be able to read the whole content of the presentation
without encountering any issues.

Let's go through some impress.js presentations on mobile devices to figure out the
common problems in designing for mobiles.

Chapter 4

[69]

Scenario 1
The images shown here are taken from a presentation in the demo section of the
impress.js github page. Obviously, it is being designed for impress-supported
browsers. You can take a look at the presentation at http://johnpolacek.github.
com/WhatTheHeckIsResponsiveWebDesign-impressjs/.

The following is a screenshot from the sample impress presentation on
supported browsers:

The following screenshot shows the same presentation on unsupported browsers:

This presentation works perfectly in supported browsers. It uses CSS opacity to
reduce the visibility initially. Then the opacity is increased on step transition to
highlight the content.

Presenting on Different Viewports

[70]

Since step transition doesn't work on unsupported browsers, content will be
displayed with very low opacity which makes the content almost unreadable
to mobile users. If you are using CSS on step transitions, make sure it doesn't
affect the mobile users.

Scenario 2
In this scenario, we are going to take a look at another presentation in the impress.
js demo section on github. The following screenshot shows the presentation on
supported browsers:

Now let's take a look at the same presentation in an unsupported browser using the
following screenshot:

Chapter 4

[71]

In this scenario, the web interface which supports impress.js provides an unclear
interface to the users while the mobile interface looks much more organized and
readable. This is because the steps are placed in the limited x, y range, so some
steps overlap others. Make sure you check your presentation in both supported and
unsupported browsers while designing.

Scenario 3
In Chapter 2, Exploring Impress Visualization Effects, we talked about adding meaning
into your presentation using the proper design. We created a presentation with steps
inside other steps to show hierarchal data representations. Let's see how it works on
supported browsers on mobile devices.

The following screenshot shows the presentation in supported browsers:

Presenting on Different Viewports

[72]

The following screenshot shows the same presentation on unsupported browsers
and devices:

We can see that the steps are displayed under the previous step instead of being
inside Step 3. This means the hierarchal structure is not visible in mobile devices. If
you are adding meaning to your presentations through design, make sure it is not
mandatory in understanding the presentation since mobile users will have issues in
such cases.

Now you should have a clear understanding of how impress.js works in
unsupported browsers. It's your responsibility to plan the design wisely.

Best design practices for mobiles devices
There are no recommended methods or best practices for designing for mobile devices
since most developers are still using impress.js as a presentation tool. Ideally, you
should be getting this knowledge by designing as many presentations as you can. I'll
list down some of the common mistakes to avoid when designing for mobiles.

• Limit the dynamic CSS on the stepenter and stepleave events
• Don't hide the steps on the initial page load
• Position elements properly to avoid the overlapping of steps
• Don't rely on effects to provide meaning to presentations

Chapter 4

[73]

The guidelines mentioned in this section don't guarantee that your presentation will
look better in unsupported browsers for all possible scenarios. We can look for an
alternative approach of using CSS media queries to handle unsupported browsers.

In this technique, you will have to create a separate design for unsupported devices,
inside another container. Once impress.js recognizes an unsupported browser, you can
hide the impress presentation container and display the mobile-specific design. CSS
media queries can be used effectively to handle the dimensions of mobile devices.

Implementing a mobile-specific layout is beyond the scope of this book. You should
look to learn responsive web design if you are willing to learn more about how to
handle mobile device layouts.

Summary
impress.js allows you to create presentations in full dimensions of the browser
window as well as inside a container with specific dimensions.

Since impress uses CSS transforms to create effects, most mobile browsers will not
support presentations created with the library. We should consider both supported
and unsupported browsers in designing presentations to provide a better experience
for users browsing from all kinds of devices.

We have to create adaptable designs by simplifying the step transitions and
continuous testing on different browsers and devices.

In the next chapter, we are going to build a fully functional single page website using
the theories and techniques we learned in the previous chapters. Until then, make
sure you try out all the examples given in the source code.

Creating Personal Websites
The internet is full of websites with amazing designs. As a web developer and
designer, there's nothing better than creating your own website to impress your
clients and friends. impress.js can be used effectively to create a complete website
with amazing effects. Apart from normal click-based navigation, you can use
keyboard controls to navigate through any part of the website.

We are going to create a fully functional website with different types of effects to
match different types of data in your profile. Once you understand the process, you
will be able to create new types of websites for different clients within a few minutes
of using impress.js.

Let's get started!

In this chapter, we are going to cover the following topics:

• Planning the website structure
• Creating pages
• Designing the home page
• Designing the portfolio page
• Designing the timeline page
• Defining the timeline navigation
• Designing the services page
• Handling the navigation menu
• Creating the navigation hint

In this chapter, we are going to use the jQuery library for adding custom
functionality to the impress.js presentation. I encourage you to learn the basics
of jQuery in order to understand the single page website creation process.

Creating Personal Websites

[76]

Planning the website structure
Personal websites are essential for showing your skills and improving your
reputation online. Earlier people used to create websites with a bunch of HTML
pages. These days single page websites are becoming very popular. You can find
various free plugins for creating such websites without putting in much effort.

impress.js can be extended to create single page websites. Actually, we are going to
create a presentation in a way that makes it look like a real website. Before we move
any further, let's plan the structure of the website.

The sketch of the structure of our website is shown as follows:

Generally, all web pages have a header with a navigation menu, so we are going to
use a fixed header with the name of the site and the navigation menu. It's important
to know that the header is not a part of the impress.js presentation. After the header,
we place the steps of the presentation to look like real web pages. A 960px container
has been chosen for the content as it's the most popular grid size in web design.

Designing the header
impress.js presentations use the full screen width and height of the web browser ;
this means that the step data could show on top of the header section, so we have to
consider the height of the header when designing presentation steps. Let's look at the
HTML code for the header section and the necessary CSS styles:

<div id="header">
 <div id="header_panel">

Chapter 5

[77]

 <h1 class="site_name">JOHN DOE</h1>
 <div class="top_menu">

 <li id="menu-about" >
 Home
 <li id="menu-portfolio-overview" >
 Protfolio
 <li id="menu-timeline-start" >
 Timeline
 <li id="menu-services-overview" >
 Services

 </div>
 </div>
</div>

Inside the header, we have the title and list of menu items for the pages. I have used
the div element to create the header section. Instead, you can use the HTML5 header
element to design the header, if necessary. In the code given, the navigation menu is
defined as a static menu where we need to insert the element manually. Later in this
chapter, I'll show you how to make it work using step events and links.

Here are the necessary styles for the header:

#header{
 background: #f8f8f8;
 height: 100px;
 border-top: 5px solid #D00505;
}

The height of the header is the important factor here. The header takes 100px as
the height. Now let's see how to avoid conflicts between the step data and header.

Creating the presentation wrapper
As I mentioned previously, we have to limit the scope of the presentation display
area using a wrapper. You should be familiar with this technique since we used it in
the previous chapter for creating the slider. Let's create the wrapper.

Here is the HTML code for the wrapper:

<div id="wrap">
 // Impress presentation will be located here
</div>

Creating Personal Websites

[78]

We have to avoid the conflicts by defining necessary styles, as follows:

#wrap{
 min-height: 400px;
 margin: 20px auto;
 overflow: hidden;
 position: relative;
 width: 960px;
}

We need to define the height and width of the wrapper and set overflow to hidden
to hide the unnecessary elements of other pages. Relative positioning allows us to
clear the conflicts with the header section. Now the wrapper will start right after the
header is finished. We are ready to create the pages of our site.

Creating pages
We will be creating a simple website with four pages in this chapter. The whole
site will act as a single impress presentation. Each one of the pages will be a step
or collection of steps inside the presentation. Let's look at the pages we are going
to create:

• Home page: This page contains an introduction about you
• Portfolio pages: This page contains your work samples
• Timeline: This page contains benchmarks of your career
• Services page: This page contains all your services

The unique thing about building websites with impress.js is that users
can use keyboard navigation as well as common navigation controls.

Chapter 5

[79]

Designing the home page
On the home page, we are going to show the details about you. It consists of multiple
steps with text-based content for the most part. Previously, we created large steps
which took the full screen or scope of the presentation, but now we are planning
to do something different by creating multiple small steps which are visible in
the browser screen at the same time, using CSS to handle the step transition. The
following is a preview of our home page:

The content shown in this screenshot will be the first step of the website. After the
first step, we have a few text-based smaller steps that are used to show the details
of the owner of website. Let's now take a look at how the steps are placed inside
the presentation:

<div id="impress">
 <div id="about" class="step slide" data-x="0" data-y='0' >
 // First step Data
 </div>

 <div id="slide2" class="step slide" data-x="0" data-y='500' >
 <div class="intro-title">Web Developer</div>
 </div>

 <div id="slide3" class="step slide" data-x="0" data-y='600' >
 <div class="intro-title">from Australia </div>
 </div>
</div>

Creating Personal Websites

[80]

Step 1 is located at the coordinates of 0,0. All the other text slides on the home page
need to be placed under the first step. We have used 500 for the data-y attribute of
the second step and each of the subsequent steps are placed within a margin of 100 in
the y direction. Only two of the text steps are shown here. You can add as many steps
as you want with proper margins. The following is a preview of the text images in
the default context:

We can see that all the steps look similar to each other. Instead, we want to show the
active step highlighted from the rest of the steps. Impress classes for the status of the
step can be used easily to create this functionality. Text steps contain a class called
intro-title which will come handy in this scenario. CSS opacity will be used to
provide the highlighting effect. Consider the following code:

.past .intro-title{
 opacity:0.1;
}
.future .intro-title{
 opacity:0.1;
}
.active .intro-title{
 opacity:1;
 text-transform: uppercase;
}

The active step contains the class active while all other steps contain either the past
or future class. We reduce the text opacity of the past and future classes to
make them almost invisible. In the active class an opacity of 1 is used to make it
completely visible. Also, we are transforming the text to uppercase in step transition
as an additional feature. Once the styles are applied, the text steps will look like
the following:

Chapter 5

[81]

Designing the portfolio page
We create personal websites to expose our skills to the world. On the home page,
we give a brief introduction about us and what we actually do. But no one is going
to believe you unless you can provide facts that prove the given details. Providing
examples of our work is the best way to convince the readers of your website or
potential clients. So let's start creating a cool portfolio page.

There are two types of pages we need for designing our portfolio:

• Portfolio gallery: This page contains a collection of work samples
• Portfolio single: This page contains detailed information about a single

work sample

Portfolio gallery
We are going to create a separate step for each of the portfolio items. We can use an
overview step with a larger scale to show the portfolio steps as a gallery. Let's create
the portfolio overview step:

<div id="portfolio-overview" class="step slide" data-x="3250"
data-y='400'
data-scale="3.5" data-type="portfolio-gallery" >
</div>

Creating Personal Websites

[82]

Positioning and scaling are the two most important factors in designing proper
overviews of your presentation. Here we have used 3250 for the data-x attribute.
Thus the portfolio items are going to be placed in the range of 3250. Also, we have
used the data-scale value of 3.5 which allows us to show six portfolio items in the
overview. Depending on the number of items you have to increase or decrease the
scale value.

Apart from impress attributes, we have used a custom attribute called data-type
and it's going to be used for handling step transitions in later stages. Let's take a look
at the portfolio gallery with six items:

Portfolio single
This page will contain the complete details about a single item. The following is a
screenshot of the portfolio single page:

Chapter 5

[83]

If we compare the previous screen of the overview and the single item screen, we
can definitely see that the same step has different content. Let's first look at the
implementation of portfolio items to understand the difference:

<div id="portfolio-1" class="step slide portfolio" data-x="1900"
 data-y='0' data-type="portfolio" >
 <div class="large"></div>
 <div class="small">
 // Details with small image
 </div>
</div>

<div id="portfolio-2" class="step slide portfolio" data-x="3200"
 data-y='0' data-type="portfolio" >
 <div class="large"></div>
 <div class="small">
 // Details with small image
 </div>
</div>

After the overview step, we place the portfolio items one by one. A special class
called portfolio is used to provide portfolio-specific design. Each item contains
a container with the class small and large. These will be used as two separate
sections. At any given time, one of these containers will be made visible.

We use the container with the class large for the overview page and it will be visible
by default. The container with class small is used for the detailed page and it's kept
invisible initially. Once the step transition happens from overview to single item, the
visibility of these containers needs to be switched.

Let's see how to handle step transitions using impress events:

document.addEventListener("impress:stepenter", function (event) {
 var data_type = $(".active").attr("data-type");
 if(data_type == 'portfolio'){
 $(".active .small").show();
 $(".active .large").hide();
 }else if(data_type == 'portfolio-gallery'){
 $(".small").hide();
 $(".large").show();
 }
}, false);

Creating Personal Websites

[84]

First we assign the stepenter event of impress.js into the current document. Both
the portfolio overview and single step has an attribute called data-type. The data
type of the active step is assigned to a variable and will be conditionally checked for
different steps.

When the portfolio gallery becomes active, we hide the detailed view and display the
large image preview. Similarly, when the portfolio item becomes active, we hide the
large container and display the details with the small container.

Currently, the stepenter event has two conditional checks. We will be adding more
conditions as we move further into creating the other pages.

In the overview, a large image is displayed. Since there are three images
inside the screen you will think that the size of the image is very small.
Don't be misled as the overview is a scaled version. The actual image
size will be the same as the size of the presentation step container.

Now we have completed the home page and portfolio pages of the website.

Designing the timeline page
Timelines are very popular components among websites. They allow us to track
the time of various activities. We are going to create a different kind of timeline
with impress.js effects to show the important activities of your career. Working
knowledge of 3D space is required to create the timeline. We will be using the depth
of the presentation canvas using the data-z attribute. Let's take a look at the preview
of our timeline:

Chapter 5

[85]

You can see that all the events of 2012 are displayed with the same size, and the
events of 2011 seem to be smaller compared to the 2012 events. Actually, the 2011
events are created with the same dimensions as the 2012 events, but they are placed
deeper in the presentation canvas using the data-z attribute.

So, the events of the current year are displayed initially. Past years are placed deeper
and deeper into the canvas. This effect enables us to view the latest event closest
to us and go into the screen for the previous events. Hence the effect we used adds
meaning to the timeline. Now let's see the implementation:

<div id="timeline-step1" class="step slide timeline" data-x="6300"
data-y='0' data-year="2012" data-type="timeline">
 //content
</div>
<div id="timeline-step2" class="step slide timeline" data-x="6600"
data-y='0' data-year="2012" data-type="timeline" >
 //content
</div>
<div id="timeline-step3" class="step slide timeline str-2011"
data-x="7200" data-y='100' data-z="-700" data-year="2011" data-
type="timeline" >
 //content
</div>

Here, I have given three steps from the timeline. The inner content is omitted here for
explanatory purposes. You can see that the two steps of 2012 have the same data-y
values and varying data-x values. The data-z value is not specified, which means
it is the same for both of the steps. Then, you can see that the step of 2011 is placed
with the data-z value of -700 which means it's deeper in the screen than 2012. In
case you are defining steps for 2010, you should use the data-z value of something
like -1400. Now let's see how events for 2011 are displayed:

Creating Personal Websites

[86]

Since there are no events for 2010, nothing will be displayed on the right of the 2011
steps. At the bottom, we are showing the years available in the timeline and the year
of the current step. Let's see how we can implement this feature.

Defining the timeline navigation
Once the presentation is completely loaded we can use the data-year attribute of
the timeline steps to generate the navigation bar with available years.

$(document).ready(function(){
 var timeline_years=[];
 $(".timeline").each(function(){
 var year = $(this).attr("data-year");
 if(($.inArray(year, timeline_years)) == -1){
 timeline_years.push(year);
 $("#timeline_tracker").append("<span id='nav-"+year+"'
 data-year='"+year+"'>"+year+"");
 }
 });
});

Once the document is ready, we get the distinct years by traversing through the
data-year attribute of timeline steps and push it to an array. We use an inArray
function to identify the distinct years. Then, we add each year as control buttons to
the timeline_tracker container using jQuery's append function.

Initially, the timeline_tracker container is defined in the page with the
display:none attribute. Let's now see how we can make it visible on step transfer:

document.addEventListener("impress:stepenter", function (event) {
 $("#timeline_tracker").hide();
 $("#timeline_tracker span").removeClass("year-highlight");

 var data_type = $(".active").attr("data-type");
 if(data_type == 'timeline'){
 $("#timeline_tracker").show();
 var data_year = $(".active").attr("data-year");
 $("#nav-"+data_year).addClass("year-highlight");
 }

}, false);

Chapter 5

[87]

Earlier, we created the stepenter event for portfolio item management. This code
will be added to the same function with another else if statement. Initially, we
hide the timeline_tracker container and remove the highlighting class on each
step transfer. Then, we check whether the active step is part of the timeline. In such
cases, we make the timeline_tracker container visible and assign the highlight
class to the year of the currently active step.

Now we have navigations and highlighting for years in the timeline. Before we
complete this, we have to make sure to create the navigation functionality for the
year buttons, as shown in the following code:

$("body").on("click", "#timeline_tracker span", function(){
 var year = $(this).attr("data-year");
 var start_step = $(".str-"+year).attr("id");
 api.goto(start_step);
});

jQuery's on function can be used to add events to dynamically inserted DOM
elements. We assign an anonymous function to the click events of timeline years.
Once the year is clicked, we get the value using the data-year attribute. Then, we
use the goto function of impress.js to navigate to the selected step.

Designing the services page
Throughout the previous sections, we used impress effects such as transform and
scaling to provide functionality for pages. Now, we are going to develop our last
page of the website by using rotation effects. First, we have to create the main page
of our services section. This will be a basic step and hence no code explanation will
be needed. The following is a preview of our services home page:

Creating Personal Websites

[88]

We are going to use rotations around the x axis for the individual service pages.
Let's move into the implementation right away:

<div id="services-step1" class="step slide services" data-x="-1400"
data-y="-300" data-rotate-x="0" >
 <div class="service-desc">WordPress Plugin Develoment</div>
</div>
<div id="services-step2" class="step slide services" data-x="-1400"
data-z="-300" data-y="0" data-rotate-x="90" >
 <div class="service-desc">WordPress Theme Design</div>
</div>
<div id="services-step3" class="step slide services" data-x="-1400"
data-y="400" data-rotate-x="180" >
 <div class="service-desc">Freelance Article Writing</div>
</div>
<div id="services-step4" class="step slide services" data-x="-1400"
data-z="300" data-y="100" data-rotate-x="270" >
 <div class="service-desc">PHP Development</div>
</div>

The important thing here is the placements of steps. Locating steps with rotations is
the most difficult part in building presentations with impress.js. We have thus kept
the data-x value of all the four steps to the same value.

Then, each of the steps is rotated at a 90 degree angle across the x axis using the
data-rotate-x attribute. Two of the slides will be in one direction while the other
two will be in the opposite direction with a 180 degree angle. We have to use the
data-y attribute for steps in the same direction and the data-z attribute for the
other two steps in the same direction. The value of the attribute depends on how
you want to place these steps. Try changing the values until you get the correct
positioning. Once the service detail pages are implemented, it should look similar to
the following screenshot:

Chapter 5

[89]

Handling the navigation menu
At the start of this chapter, we looked at the header with the navigation menu. Now
let's implement the navigation links and controls. We have to assign unique IDs to
the steps that we want appearing on the menu. Here I have assigned the IDs of the
four pages for the href attribute of the menu:

 <li id="menu-about" >Home
 <li id="menu-portfolio-overview" ><a href=
 "#/portfolio-overview">Protfolio
 <li id="menu-timeline-start" ><a href=
 "#/timeline-start">Timeline
 <li id="menu-services-overview" ><a href=
 "#/services-overview">Services

Whenever the user clicks on the link, the presentation will navigate to the step with
the specified ID. Also, you may have noticed that we have used the same ID for the
list item with menu- as the prefix. We are going to use this ID to highlight the active
menu. Let's get on with the implementation for highlighting:

document.addEventListener("impress:stepenter", function (event) {
 var data_id = $(".active").attr("id");
 if(data_id == 'about'){
 $("li").removeClass("menu_highlight");
 $("#menu-about").addClass("menu_highlight");
 }else if(data_id == 'portfolio-overview'){
 $("li").removeClass("menu_highlight");
 $("#menu-portfolio-overview").addClass("menu_highlight");
 }else if(data_id == 'timeline-start'){
 $("li").removeClass("menu_highlight");
 $("#menu-timeline-start").addClass("menu_highlight");
 }else if(data_id == 'services-overview'){
 $("li").removeClass("menu_highlight");
 $("#menu-services-overview").addClass("menu_highlight");
 }
}, false);

On the stepenter event we get the ID of the active step. Then, we check if it's one
of the main menu items. If a match is found we remove the menu highlighting class
from all other menu items and assign it to the currently active menu. So, whenever
we move between steps, the main menu item will be displayed in a different color.

Creating Personal Websites

[90]

Creating the navigation hint
Since we are creating a website using impress.js, users have the ability to use
keyboard navigations to traverse through various pages. But the users don't
know that this website is built upon impress.js. This means we have to provide a
hint indicating to users to use keyboard controls. A hint is created as a separate
component from the presentation as shown in the following code:

<div class="hint">
 <p>Use a spacebar or arrow keys to navigate</p>
</div>

This container should be placed after the wrapper container. Now, we don't
need to show the hint in every step, so we are going to limit the hint to the home
page. Initially the hint will be kept hidden with opacity of 0. When the impress
presentation is initialized, we set display to block using the following CSS code:

.impress-enabled .hint {
 display: block;
}

Since opacity is set to 0, it is not displayed yet to the user. So, let's enable the hint
on the home page using the following code snippet:

.impress-on-about .hint {
 opacity: 1;
 transform: translateY(0px);
 transition: opacity 1s ease 1s, transform 0.5s ease 1s;
}

Impress generates a class called impress-on-{stepId} in each step transition.
The home page will thus contain a class called impress-on-about when active.
We set the opacity to 1 to make it visible to the user.

Now, we have designed and developed a fully functional personal website using
impress.js. You can change the details to your own information and host it online to
get a better online reputation.

Chapter 5

[91]

Summary
In the previous chapters we learned how impress.js can be used to create
presentations. In this chapter, we focused on creating something different from its
default behavior.

We chose to create a personal website with impress.js as having a personal website
can be an effective way of increasing your reputation online. We started by designing
a complete website from scratch. Throughout this chapter, we assigned impress
effects to real-world scenarios and created four different types of pages for the site.

By now you should be familiar with all kinds of possibilities of working with
impress.js. In the next chapter, we are going to discuss the issues and bugs of
impress.js and how we can effectively manage them without distracting the users.

Until then, make sure you try creating your own website and host it online.

Troubleshooting
No technologies or libraries are without bugs and issues at the beginning of their
development. impress.js also has its share of bugs and limitations. As developers or
designers, we should be capable of handling bugs and creating workarounds.

impress.js has an active community and hence you can report bugs or limitations
and get solutions very quickly. This chapter will focus on providing the necessary
knowledge to troubleshoot impress.js presentations when required.

In this chapter, we are going to cover the following topics:

• Browser compatibility
• Handling unsupported browsers
• Limitations and new features
• Troubleshooting and support

Browser compatibility
Even though impress.js is a presentation framework, it runs inside the browser
window, so the compatibility of browsers needs to be taken into consideration when
creating presentations. Let's take a look at supported and unsupported browsers and
devices for impress.js.

Troubleshooting

[94]

impress.js uses transforms of CSS3 and hence it is mainly supported in web
browsers, compared to mobile browsers. The following is the list of supported
browsers for impress.js:

• Firefox Version 10 and higher
• Safari Version 5.1 and higher
• Chrome
• Internet Explorer 10 (needs additional polyfill libraries)

Currently, impress.js provides very limited support for mobile-based devices. The
following is the list of supported devices for impress.js:

• iPad
• BlackBerry PlayBook

If you are using impress.js for presenting information, make sure you use one of
the three browsers which provide comprehensive support. In case you are creating
websites or applications accessed by online users, it's preferable to mention the
supported browsers.

The following is a list of unsupported browsers for impress.js:

• Opera
• Internet Explorer 9 and lower
• Mobile browsers

Also, it's mentioned on the official site that you need to have hardware acceleration
support to run the impress animations smoothly. Even though they don't work on
some browsers, there is a good chance that those browsers will provide support for
CSS 3D transforms in the near future.

Handling unsupported browsers
In browsers which do not have the support for impress.js, presentation steps will be
displayed all over the place without proper alignment or design which can make it
very hard to read. Since users don't have a clear idea about impress.js, it's common
that they will consider it as a bad design which is going to ruin your reputation as
a designer.

Chapter 6

[95]

It is thus recommended to provide a notification for users using unsupported
browsers. impress.js has an in-built method to provide this functionality using CSS
classes. There are two predefined classes called impress-supported and impress-
not-supported. When the browser is not supported, the impress-not-supported
class will be assigned to the body element and when the browser is fully compatible,
the impress-supported class is added to the body.

Now let's create the fallback message for the user. The following is the message used
in the default official demo:

<div class="fallback-message">
 <p>Your browser doesn't support the features required by
impress.js, so you are presented with a simplified version of this
presentation.</p>
 <p>For the best experience please use the latest Chrome,
Safari or Firefox browser.</p>
</div>

We can place this element anywhere in the page inside the body tag and change the
messages when necessary. There are two ways of displaying this message to the user.
First, we can hide the fallback message and display on unsupported browsers using
following CSS code:

.impress-not-supported .fallback-message {
 display: block;
}

The second method is to display the fallback message initially and hide them in
the supported browsers using following CSS code:

.impress-supported .fallback-message {
 display: none;
}

Limitations and new features
impress.js was built to create presentations even though we are interested in some
amazing other applications with the framework. It is improving every day and there
are a few limitations in some scenarios. Also, there are new functionalities which
might add a tremendous boost to the power of impress presentations. In this section,
we are going to figure out the limitations and necessary improvements that we are
hoping to see in the future. We will look into the following list in this section:

• Positioning steps relative to other steps
• Defining the previous and next steps

Troubleshooting

[96]

• Transition duration for individual steps
• Adding and removing navigation keys
• Creating substeps

Positioning steps relative to other steps
We define the positioning of elements using the data-x, data-y, and data-z
attributes. For each step, we need to provide absolute values such as data-x=100
and data-x=300 , but it would be more appropriate to position steps relative to each
other using syntax similar to the following:

<div class="step" data-x="100">
 <div>Step1</div>
</div>
<div class="step" data-x+="300">
 <div>Step1</div>
</div>

In this scenario, the second step will be 300px to the right-hand side of the first
step. Providing relative positions allows us to have a clear understanding about the
margins between steps rather than calculating it.

Defining the previous and next steps
Presentations are not always going to be run step by step in a sequential manner.
Sometimes we need to go to the previously explained slide and then move to the
next slide without proper ordering. With current impress functions, it's a little
difficult. In the slider automation example, we created a workaround to go to any
step we like. But it is some additional work. It would be more appropriate if impress.
js could provide something like the following:

<div id="step1" class="step" data-x="100">
 <div>Step1</div>
</div>
<div id="step2" class="step" data-x="300" data-previous="step1" data-
next="step3" >
 <div>Step2</div>
</div>
<div id="step3" class="step" data-x="300" data-previous="step1" data-
next="step2">
 <div>Step3</div>
</div>

Chapter 6

[97]

In this situation, we will be able to define the next and previous steps of any given
slide using a simple data attribute inside the step. This will be a very handy feature
which we can expect to see in the future.

Transition duration for individual steps
We can provide transition durations for slides in the impress container using the
data-transition-duration attribute with existing functionality, but the timing
will be the same for all the steps. Defining durations for each step can be a very
useful feature. We can use syntax like the following to define the transition duration
for individual items:

<div class="step" data-x="300" data-duration="3000" >
 <div>Step2</div>
</div>
<div class="step" data-x="300" data-duration="2000" >
 <div>Step2</div>
</div>

Adding and removing navigation keys
Adding or removing a key used for navigation is very difficult without changing the
core impress.js library. It is not wise to change the library for such a task as it reduces
the extendibility of the library. Since it is common throughout the presentation, we
cannot define data attributes as we did earlier, so we have to write some kind of API
method to add and remove keys when necessary, and add custom functionality for
new keys.

Creating substeps
We are allowed to create as many steps as we want. Sometimes we need small
substeps to be shown inside the main steps. There is no way to provide such
functionality with the current version of impress.js. We thus have to implement
this feature in the future.

The limitations we mentioned can be converted to add real power to impress
presentations. impress.js is open source and free. So why don't you try to implement
these features in your own impress version?

Troubleshooting

[98]

Troubleshooting and support
impress.js is not only used for presentations. We might find bugs on the core
framework when we are trying to provide custom functionalities for our
applications. It's our responsibility to report such bugs using the official Github
site. impress.js has an active support forum where people will solve the bugs or
new features in core impress.js or their own branched versions of impress.js. Once
we identify an issue, first we have to go through the existing and fixed bugs list to
see whether it has already been taken into consideration. Otherwise, you will have
to report it and look for answers from the people who are using and developing
impress.js.

The following screenshot shows us a list of existing and fixed bugs:

All your new ideas and feature requests should be submitted using the
http://github.com/bartaz/impress.js/issues/new link. The active issues
list can be found at https://github.com/bartaz/impress.js/issues.

Chapter 6

[99]

Summary
Throughout this book we learned about various types of presentations and
techniques using impress.js. Since every library has its limitations and issues, we
need to have the proper knowledge to fix those issues without much trouble.

We identified the limitations and issues of impress.js and discussed possible
solutions to get around them. Finally we learnt where to look for support in case we
are not capable of fixing errors, so we discussed how to report bugs and get your
issues resolved using the Github site for impress.js.

Now we have come to the end of creating impressive presentations with impress.js.
You should be capable of building different kinds of presentations with impress. In
Appendix, Impress Tools and Resources, we will be looking at some of the cool impress
presentations and applications.

Impress Tools and Resources
We covered the impress.js presentation development techniques and concepts in the
previous chapters. Once you are familiar with creating presentations, there are some
online resources to improve your experience on this framework. Covering these
tools and applications is beyond the scope of this book, so you can go through these
resources online.

Impress presentation tools
In order to create impress presentations, you must at least have knowledge of HTML
and CSS. Not everyone who wants to create presentations will be familiar with
these technologies, so it's important to find out the possibilities of creating impress
presentations without technical knowledge. Luckily, there are some free tools we can
use to create presentations with impress.js.

Strut
This is a free tool where you can create slides with basic elements. Although it is not
possible to use the full features of impress.js, this will be handy for non-technical
people to create quick presentations. You can find this tool available at http://
tantaman.github.com/Strut/dist/index.html.

Impress Tools and Resources

[102]

As with most presentation software, slides are displayed as a list in the left-hand side
and we can add new slides dynamically. The following screenshot will preview the
slide creation screen of this tool:

We can add elements such as text, images, and videos into slides. Advanced features
such as CSS styles and events cannot be used yet with this tool. Once we finish
the slide creation process, we can go to the overview of the presentation using the
Overview button on the right. The Overview screen will be as follows:

Overview is where we position our slides. Just drag the slides or provide custom
values for the x, y, z attributes. Once we are done with adjusting the positions, we
can click on the Present button to start the presentation and it will run as a normal
impress presentation.

Appendix

[103]

Impressionist
Impressionist is another tool to automate the presentation creation process. You can
find the demo at http://hsivaram.com/impressionist/0.1/. The only limitation
of impressionist compared to strut is that it only works on WebKit browsers, so we
will be using the Chrome browser to demonstrate the functionality.

The following is the main slide creation screen of impressionist. It is quite similar to
the previous slide creation screen:

Once we are done with all the slides, we can move into the overview of slides using
the Orchestration View button on the top-right corner of the screen. There you can
position elements like we did earlier. All the controls are given in the menu bar for
positioning, rotating, and scaling. The following is the preview of Orchestration View:

We can click on the Preview button to see the presentation in action. These tools
are very handy for non-technical users. Feel free to check out these tools and create
simplified presentations.

http://hsivaram.com/impressionist/0.1/

Impress Tools and Resources

[104]

Impressive presentations
We have created various kinds of presentations throughout this book. Now let's see
some awesome presentations created by others using impress.js:

• What the Heck is Responsive Web Design by John Polacek at http://
johnpolacek.github.com/WhatTheHeckIsResponsiveWebDesign-
impressjs/#/title

• 12412.org presentation to Digibury by Stephen Fulljames at http://
extra.12412.org/digibury/#/title

• Bonne année 2012 by Edouard Cunibil at http://duael.fr/voeux/2012/#/
since-2009

• WordPress 201: Performance and Security by Jason Cosper at http://
jasoncosper.com/talks/wcphx/wp201/#/step-1

• The Revolutionary CSS3: a non-technical intro to CSS3 by Scott Cheng at
http://scottcheng.github.com/revolutionary-css3/#/title

impress.js demos from the book
We created sample applications to explain each concept and technique in impress.js
in this book. Here you can find the online resources for accessing these demos.

A complete list of all the demos from the book can be found at the following link:

http://innovativephp.com/demo/impress-js-demos/

Full source code of the examples in this book can be downloaded from the
following link:

http://innovativephp.com/demo/impress-js-demos.zip

Index
Symbols
#impress container 14
#impress element 45, 67

A
active class 50
active slide

highlighting 67
animations, impress.js 10
api.goto function 49, 50
api.goto(id) method 48
api.init() method 48
api.next() function 48, 51, 57
api.prev() function 49, 52, 57

B
browser compatibility, impress.js 93, 94
browser prefixes

-moz 22
-ms 22
-o 22
-webkit 22

bullet points, impress.js 10

C
clearInterval function 66
computeWindowScale function 47
configuration, impress.js 11, 12
config variable 47
container

impress.js, using in 62
presentation, wrapping inside 64

content slider

about 62
active slide, highlighting 67
design, planning 62, 63
developing 62
navigation controls, creating 65
playing, automatically 64
Play/Pause features, creating 65, 66
presentation, wrapping inside container 64
slide numbers, adding 66
slides, designing 63, 64

CSS 7
CSS3 22
css function 41
CSS transformations

about 8, 22
URL, for info 8

custom events
custom keys, assigning for 58

custom keys
assigning, for custom events 58

custom transition timing
creating 52, 53

D
data-perspective attribute 37
data-perspective.html file 39
data perspective, scaling 37-39
data-positioning.html file 26
data-rotate-application.html file 31
data-rotate-x attribute 26
data-rotate-z attribute 28
data-scale attribute 15
data-x attribute 23
data-y attribute 24
data-z attribute 24

[106]

default configurations, impress.js
about 44
height option 44-46
maxScale option 44, 46
minScale option 44, 46
perspective option 44, 46
transitionDuration option 45, 46
width option 44-46

defaults variable 44
design

planning, for content slider 62, 63
desktop presentations

drawbacks 9

E
effects

about 21
positioning 22
rotating 26
scaling 32, 33

effects, positioning
on x axis 23
on y axis 24
on z axis 24, 25

elements, rotating
around x axis 26, 27
around y axis 27, 28
around z axis 28

events
keys, adding for 58, 59

F
features, impress.js

positioning 8
rotating 8
scaling 8
working on 3D space 8

fullscreen presentations
about 61
usages 62

future class 56

G
Github 98
goto function 49, 53, 59
GPL 9

H
header

designing, for website 76
home page

designing, for website 79, 80
href attribute 89
HTML 7

I
if statement 59
impress API functions

about 48
api.goto(id) 48-50
api.init() 48
api.next() 48
api.prev() 48, 49

impress() function 51
Impressionist

about 103
slide creation screen 103
URL 103

impressive presentations 104
impress.js

about 7, 8
animations 10
browser compatibility 93, 94
bullet points, using 10
configuring 11, 12, 44
core code, for finding effects 40, 41
default configurations 44
demos, from book 104
downloading 11, 12
features 8, 9
limitations 95
navigation keys, adding 97
navigation keys, removing 97
next step, defining 96
presentation outline 10
previous step, defining 96
steps, positioning relative to other steps 96
substeps, creating 97
supported browsers 94
supported devices 94
themes, using 11
transition duration, for individual steps 97
troubleshooting 98

[107]

unsupported browsers 94
usages 8
using, inside container 62

impress.js file 12, 44
impress.js presentations

on mobile 68
impress.js, step events

stepenter 53, 54
stepleave 53, 54

impress-keyboard.js file 59
impress-not-supported class 95
impress presentation tools

about 101
Impressionist 103
Strut 101

impress-supported class 95
iniStep function 40
initStep function 40
Internet 75

K
keyboard configurations

impress core 56, 57
working with 56

keyboard.html file 59
keydown event 58, 59
keys

adding, for events 58, 59

M
MIT 9
mobile, impress.js presentations

about 68
best design practices 72, 73
issues 68-72

N
navigation controls, content slider

creating 65
navigation hint

creating 90
navigation menu

handling 89

O
on function 87
opacity attribute 18
Open Office Impress 7

P
pages

creating, for website 78
past class 55
pfx function 41
Play/Pause features, content slider

creating 65, 66
portfolio gallery 81
portfolio page

designing, for website 81
portfolio single 82-84
positioning

scaling, combining with 34
PowerPoint 7, 9
practical application

creating, for rotation 29-31
creating, for scaling 35, 36

presentation container
creating 14

presentation creation tools 7
presentation outline, impress.js 10
presentations

about 7
automating 51
creating 12
designing 13
overview 19, 20
wrapping, inside container 64

presentation wrapper
designing, for website 77, 78

present class 55
preventDefault method 56
Prezi.com 8

R
rotateZ function 41
rotation

practical application, creating 29-31

[108]

S
scaling

combining, with positioning 34
data perspective 37-39
practical application, creating 35, 36

scaling effects 32, 33
scrollTo function 50
services page

designing 87, 88
setInterval function 51, 64, 66
setTimeout function 53
slide creation screen, Impressionist 103
slide creation screen, Strut 102
slides

about 8
designing 63, 64

step class 15
working 55

step click event
handling 59, 60

stepenter event 53-89
stepleave event 53, 54, 67
steps

about 8
creating 14, 15, 16
defining 96
positioning, relative to other steps 96
styles, applying 15, 16
visibility, limiting 18

step_transitions array 52
Strut

about 101
slide creation screen 102
URL 101

styles
applying, on steps 15, 16

substeps
creating 97

switch statement 58, 59

T
themes, impress.js 11
timeline navigation

defining 86, 87
timeline page

designing, for website 84, 85

timelines 84
timeline_tracker container 87
transition-duration attribute 97
translate3d function 41

U
unsupported browsers

handling 94, 95

V
visibility

limiting, of steps 18
visibility attribute 18

W
web-based presentations 7
website structure

header, designing 76
planning 76
presentation wrapper, designing 77, 78

X
x axis

effects, positioning on 23
elements, rotating around 26, 27

Y
y axis

effects, positioning on 24
elements, rotating around 27, 28

Z
z axis

effects, positioning on 24, 25
elements, rotating around 28

zoom-in feature 15
zoom-out feature 15

Thank you for buying
Building Impressive Presentations with

impress.js

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Prezi for Business
Presentations
ISBN: 978-1-849693-02-8 Paperback: 258 pages

Engage your audience visually with stunning
Prezi presentation designs and be the envy of your
colleagues who use PowerPoint

1. Turns anyone already using Prezi into a master
of both design and delivery

2. Illustrated throughout with easy to follow
screenshots and some live Prezi examples to
view online

3. Written by Russell Anderson-Williams, one of
the fourteen experts hand-picked by Prezi

Responsive Web Design with
HTML5 and CSS3
ISBN: 978-1-849693-18-9 Paperback: 324 pages

Learn responsive design using HTML5 and CSS3 to
adapt websites to any browser or screen size

1. Everything needed to code websites in HTML5
and CSS3 that are responsive to every device or
screen size

2. Learn the main new features of HTML5 and
use CSS3’s stunning new capabilities including
animations, transitions, and transformations

3. Real world examples show how to
progressively enhance a responsive design
while providing fall backs for older browsers

Please check www.PacktPub.com for information on our titles

WebGL Beginner's Guide
ISBN: 978-1-849691-72-7 Paperback: 376 pages

Become a master of 3D web programming in WebGL
and JavaScript

1. Dive headfirst into 3D web application
development using WebGL and JavaScript.

2. Each chapter is loaded with code examples and
exercises that allow the reader to quickly learn
the various concepts associated with 3D web
development

3. The only software that the reader needs to run
the examples is an HTML5 enabled modern
web browser. No additional tools needed.

HTML5 Canvas Cookbook
ISBN: 978-1-849691-36-9 Paperback: 348 pages

Over 80 recepies to revolutionalize the web
experience with HTML5 Canvas

1. The quickest way to get up to speed with
HTML5 Canvas application and game
development

2. Create stunning 3D visualizations and games
without Flash

4. Written in a modern, unobtrusive, and objected
oriented JavaScript style so that the code can be
reused in your own applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Impressive Presentations
	What is impress.js?
	Built-in features
	Beyond presentations with impress.js
	Why is it important?
	Presentation outline
	Using bullet points
	Animations
	Using themes

	Downloading and configuring impress.js
	Creating your first presentation
	Designing the presentation
	Creating the presentation container
	Creating your first step
	Applying styles on steps
	Creating Step 1
	Creating Step 2
	Limiting the visibility of steps
	Presentation overview

	Summary

	Chapter 2: Exploring Impress Visualization Effects
	Introduction to CSS transformations
	Positioning effects
	Positioning on the x axis
	Positioning on the y axis
	Positioning on the z axis

	Rotating effects
	Rotation around the x axis
	Rotation around the y axis
	Rotation around the z axis

	Rotations in practice
	Scaling effects
	The importance of positioning in scaling
	Scaling in practice
	Planning the design

	Data perspective
	impress.js under the hood
	Summary

	Chapter 3: Diving into the Core of impress.js
	impress.js configuration
	Default configurations
	Customizing configurations
	Configuring the width and height
	Configuring the minScale and maxScale
	Configuring the perspective
	Configuring the transition duration

	Looking at configurations inside the core

	Understanding the impress API functions
	Inside the next function
	Inside the prev function
	Inside the goto function

	Automating presentations
	Creating custom transition timing
	impress.js step events
	How to use the step class
	Working with keyboard configurations
	Default keyboard configurations
	Inside the impress core

	Assigning custom keys for custom events
	Adding new keys for new events
	Handling the step click event
	Summary

	Chapter 4: Presenting on Different Viewports
	Fullscreen presentations
	Using impress.js inside a container
	Developing a content slider
	Planning the design
	Designing slides
	Wrapping the presentation inside a container
	Playing the slider automatically
	Creating navigation controls
	Creating the play/pause features
	Adding slide numbers
	Highlighting the active slide

	impress.js presentations on mobile devices
	Issues in designing for mobile devices
	Scenario 1
	Scenario 2
	Scenario 3

	Best design practices for mobiles
	Summary

	Chapter 5: Creating Personal Websites
	Planning the website structure
	Designing the header
	Creating the presentation wrapper

	Creating pages
	Designing the home page
	Designing the portfolio page
	Portfolio gallery
	Portfolio single

	Designing the timeline page
	Defining the timeline navigation
	Designing the services page
	Handling the navigation menu
	Creating the navigation hint
	Summary

	Chapter 6: Troubleshooting
	Browser compatibility
	Handling unsupported browsers
	Limitations and new features
	Positioning steps relative to other steps
	Defining the previous and next steps
	Transition duration for individual steps
	Adding and removing navigation keys
	Creating substeps

	Troubleshooting and support
	Summary

	Appendix: Impress Tools and Resources
	Impress presentation tools
	Strut
	Impressionist

	Impressive presentations
	impress.js demos from the book

	Index

